IRSDT: A Framework for Infrared Small Target Tracking with Enhanced Detection
Abstract
:1. Introduction
- We proposed a new infrared small target detection and tracking framework, which combines a CNN-based target detection model, a traditional target tracker, and a target trajectory predictor. The method has a relatively high reasoning speed and detection accuracy.
- We propose a group of lightweight infrared small target detection methods-yolo_IRS_D1 and yolo_IRS_D2, which have similar inference speeds with the yolov5s but have higher accuracy. Yolo_IRS_D1 and yolo_IRS_D2 are used to detect the whole image and the region image, respectively, so the proposed framework can effectively reduce the computational cost by using different detection models.
- We propose a target screening strategy that combines target detection, tracking, and trajectory prediction results so that the framework can achieve the tracking stability when the target is occluded by the background and disturbed by other objects.
- The proposed method has been verified using publicly available infrared small vehicle target datasets. The results demonstrated that the proposed framework tracks the vehicle target consistently and adapts well to situations such as the temporary disappearance of the target and interference from other vehicles. The Euclidean distance of the coordinate deviation is ≤4 pixels.
2. Related Works
2.1. Infrared Small Target Detection Methods Basd on Deep Learning
2.2. Infrared Small Target Tracking Methods
3. Proposed Method
3.1. Structure of the IRSDT
3.2. Full-Image Target Detection
3.3. Cropped-Image Target Detection and Tracking
3.4. Target Trajectory Predictor
4. Experiment Settings
4.1. Experiment Environment
4.2. Dataset
4.3. Evaluation Criteria
5. Experiment and Result Analysis
5.1. Ablation Experiment
5.2. Comparison of Advanced Detection Models
5.3. RoI target Detection Experiment
5.4. IRSDT Detection and Tracking Experiment
5.4.1. Sequence No. 14
5.4.2. Sequence No. 80
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y. ultralytics/yolov5: v6.1-TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. Zenodo 2022, 2, 2. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Huang, L.; Yang, Y.; Deng, Y.; Yu, Y. Densebox: Unifying landmark localization with end to end object detection. arXiv 2015, arXiv:1509.04874. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636. [Google Scholar]
- Law, H.; Teng, Y.; Russakovsky, O.; Deng, J. Cornernet-lite: Efficient keypoint based object detection. arXiv 2019, arXiv:1904.08900. [Google Scholar]
- Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-Up Object Detection by Grouping Extreme and Center Points. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Park, J.; Chen, J.; Cho, Y.K.; Kang, D.Y.; Son, B.J. CNN-based person detection using infrared images for night-time intrusion warning systems. Sensors 2019, 20, 34. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Q.; Zhang, T.; Cui, W.; Yan, P. Infrared Image Small-Target Detection Based on Improved FCOS and Spatio-Temporal Features. Electronics 2022, 11, 933. [Google Scholar] [CrossRef]
- Du, J.; Lu, H.; Zhang, L.; Hu, M.; Chen, S.; Deng, Y.; Shen, X.; Zhang, Y. A spatial-temporal feature-based detection framework for infrared dim small target. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Bai, Y.; Li, R.; Gou, S.; Zhang, C.; Chen, Y.; Zheng, Z. Cross-connected bidirectional pyramid network for infrared small-dim target detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ding, L.; Xu, X.; Cao, Y.; Zhai, G.; Yang, F.; Qian, L. Detection and tracking of infrared small target by jointly using SSD and pipeline filter. Digit. Signal Process. 2021, 110, 102949. [Google Scholar] [CrossRef]
- Lan, Y.; Peng, B.; Wu, X.; Teng, F. Infrared dim and small targets detection via self-attention mechanism and pipeline correlator. Digit. Signal Process. 2022, 130, 103733. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, L.; Tan, F.; Xi, Y.; Zheng, H.; Li, N. ISTDU-Net: Infrared Small-Target Detection U-Net. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Fan, M.; Tian, S.; Liu, K.; Zhao, J.; Li, Y. Infrared small target detection based on region proposal and CNN classifier. Signal Image Video Process. 2021, 15, 1927–1936. [Google Scholar] [CrossRef]
- Ju, M.; Luo, J.; Liu, G.; Luo, H. ISTDet: An efficient end-to-end neural network for infrared small target detection. Infrared Phys. Technol. 2021, 114, 103659. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Z.; Tan, F.; Zhao, Y.; Zheng, H.; Zhang, W. RISTDnet: Robust infrared small target detection network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, S.; Huang, D.; Wang, Y. Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 385–400. [Google Scholar]
- Xi, X.; Wang, J.; Li, F.; Li, D. IRSDet: Infrared Small-Object Detection Network Based on Sparse-Skip Connection and Guide Maps. Electronics 2022, 11, 2154. [Google Scholar] [CrossRef]
- Bosquet, B.; Mucientes, M.; Brea, V.M. STDnet: Exploiting high resolution feature maps for small object detection. Eng. Appl. Artif. Intell. 2020, 91, 103615. [Google Scholar] [CrossRef]
- Bosquet, B.; Mucientes, M.; Brea, V.M. STDnet-ST: Spatio-temporal ConvNet for small object detection. Pattern Recognit. 2021, 116, 107929. [Google Scholar] [CrossRef]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Fan, H.; Zhu, Y.; Hui, B.; Zhang, Z.; Zhong, P.; Li, D.; Zhang, S.; Chen, G.; Wang, L. A dataset for infrared time-sensitive target detection and tracking for air-ground application. China Sci. Data 2022, 7, 206–221. [Google Scholar]
- Hou, Q.; Zhi, X.; Lu, L.; Zhang, H.; Zhang, W. Fast small target tracking in IR imagery based on improved similarity measure. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition, Beijing, China, 13–15 May 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9301, pp. 747–753. [Google Scholar]
- Li, Y.; Liang, S.; Bai, B.; Feng, D. Detecting and tracking dim small targets in infrared image sequences under complex backgrounds. Multimed. Tools Appl. 2014, 71, 1179–1199. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, H. Infrared dim and small target tracking method incorporating statistical characteristics. In Infrared Technology and Applications, and Robot Sensing and Advanced Control; SPIE: Bellingham, WA, USA, 2016; Volume 10157, pp. 510–518. [Google Scholar]
- Qian, K.; Zhou, H.; Rong, S.; Wang, B.; Cheng, K. Infrared dim-small target tracking via singular value decomposition and improved Kernelized correlation filter. Infrared Phys. Technol. 2017, 82, 18–27. [Google Scholar] [CrossRef]
- Yun, S.; Kim, S. Robust infrared target tracking using thermal information in mean-shift. In Pattern Recognition and Tracking; SPIE: Bellingham, WA, USA, 2019; pp. 52–57. [Google Scholar]
- Xiao, S.; Ma, Y.; Fan, F.; Huang, J.; Wu, M. Tracking small targets in infrared image sequences under complex environmental conditions. Infrared Phys. Technol. 2020, 104, 103102. [Google Scholar] [CrossRef]
- Zhao, D.; Gu, L.; Qian, K.; Zhou, H.; Yang, T.; Cheng, K. Target tracking from infrared imagery via an improved appearance model. Infrared Phys. Technol. 2020, 104, 103–116. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Z.; Chen, Z.; Xie, Y.; Li, Z. Infrared Dim Small Target Tracking Based on Inter-frame Consistency Under Complex Background. In Proceedings of the International Conference on Artificial Intelligence and Computer Engineering, Hangzhou, China, 5–7 November 2021; pp. 728–735. [Google Scholar]
- Huo, Y.; Chen, Y.; Zhang, H.; Zhang, H.; Wang, H. Dim and Small Target Tracking Using an Improved Particle Filter Based on Adaptive Feature Fusion. Electronics 2022, 11, 2457. [Google Scholar] [CrossRef]
- Fan, Y.; Qiu, Q.; Hou, S.; Li, Y.; Xie, J.; Qin, M.; Chu, F. Application of Improved YOLOv5 in Aerial Photographing Infrared Vehicle Detection. Electronics 2022, 11, 2344. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, H.; Huang, Z.; Luo, Y.; Li, Y. Road infrared target detection with I-YOLO. IET Image Process. 2022, 16, 92–101. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, L.; Hu, C.; Lei, S.; Zhang, T.; Mou, X. YOLO-SASE: An Improved YOLO Algorithm for the Small Targets Detection in Complex Backgrounds. Sensors 2022, 22, 4600. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Sun, L. ECA-YOLOv5: Multi scale infrared salient target detection algorithm based on anchor free network. In Ninth Symposium on Novel Photoelectronic Detection Technology and Applications; SPIE: Bellingham, WA, USA, 2023; Volume 12617, p. 126170J. [Google Scholar] [CrossRef]
- Yin, Q.; Yang, W.; Ran, M.; Wang, S. FD-SSD: An improved SSD object detection algorithm based on feature fusion and dilated convolution. Signal Process. Image Commun. 2021, 98, 116402. [Google Scholar] [CrossRef]
- Zhai, S.; Shang, D.; Wang, S.; Dong, S. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 2020, 8, 24344–24357. [Google Scholar] [CrossRef]
- Lim, J.S.; Astrid, M.; Yoon, H.J.; Lee, S.I. Small object detection using context and attention. In Proceedings of the International Conference on Artificial Intelligence in Information and Communication, Jeju Island, Republic of Korea, 13–16 April 2021; pp. 181–186. [Google Scholar]
S/N | RoI Target Detection | RoI Target Tracking | Final Results |
---|---|---|---|
1 | No target | No target | Output RoI image center coordinates; |
2 | No target | With target | Output tracking results; |
3 | Single target | With and without target | Output detection results; |
4 | Multiple targets | No target | Output of detection results nearest to the center of RoI image; |
5 | Multiple targets | With target | Output of detection results nearest to the tracking result; |
Class | Training Set | Test Set |
---|---|---|
Data Serial Number | 1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23; 25; 27; 29; 31; 33; 35; 37; 39; 41; 43; 45; 47; 49; 51; 53; 55; 57; 59; 61; 63; 65; 67; 69; 71; 73; 75; 77; 79; 81; 83; 85; 87; 89; 91 | 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 44; 46; 48; 50; 52; 54; 56; 58; 60; 62; 64; 66; 68; 70; 72; 74; 76; 78; 80; 82; 84; 86 |
Number of Images | 11,000 | 10,750 |
Number of Sample | 44,131 | 45,043 |
No. | Backbone | Neck | Head | TP | FN | FP | Precision (%) | Recall (%) | Score |
---|---|---|---|---|---|---|---|---|---|
1 | 36,395 | 8648 | 3468 | 91.3 | 80.8 | 20,810 | |||
2 | √ | 39,458 | 5585 | 1178 | 97.1 | 87.6 | 31,515 | ||
3 | √ | √ | 40,178 | 4865 | 1328 | 96.8 | 89.2 | 32,657 | |
4 | √ | √ | √ | 40,539 | 4504 | 1383 | 96.7 | 90.0 | 33,268 |
No. | Mdoels | TP | FN | FP | Precision (%) | Recall (%) | Score | MParam | Gflops | FPS |
---|---|---|---|---|---|---|---|---|---|---|
1 | Yolov5s | 36,395 | 8648 | 3468 | 91.3 | 80.8 | 20,810 | 7.06 | 16.3 | 276 |
2 | Yolo-DGS [40] | 37,791 | 7252 | 2584 | 93.6 | 83.9 | 25,371 | 9.4 | 64.3 | 154 |
3 | IYolo [41] | 38,242 | 6801 | 1760 | 95.6 | 84.9 | 27,920 | 3.5 | 34.2 | 109 |
4 | Yolo-SASE [42] | 39,683 | 5360 | 1870 | 95.5 | 88.1 | 30,583 | 13.7 | 28 | 262 |
5 | ECA-Yolo [43] | 39,998 | 5045 | 1885 | 95.5 | 88.8 | 31,184 | 11.3 | 23.1 | 256 |
6 | FD-SSD [44] | 29,683 | 15,360 | 1013 | 96.7 | 65.9 | 12,298 | 5.8 | 30.1 | 88 |
7 | DF-SSD [45] | 29,404 | 15,639 | 1007 | 96.7 | 65.3 | 11,752 | 10.0 | 31.6 | 192 |
8 | SSD-ST [19] | 33,512 | 11,531 | 895 | 97.4 | 74.4 | 20,192 | 2.8 | 24.8 | 244 |
9 | FA-SSD [46] | 31,620 | 13,423 | 1699 | 94.9 | 70.2 | 14,799 | 9.0 | 34.8 | 173 |
10 | IRSDet (ours) | 40,539 | 4504 | 1383 | 96.7 | 90.0 | 33,268 | 7.7 | 19.8 | 219 |
Model | Resolution | Target Number | TP | FN | FP | Precision (%) | Recall (%) | Score |
---|---|---|---|---|---|---|---|---|
Yolov5s | 64 × 64 | 9333 | 8437 | 896 | 529 | 94.1 | 90.4 | 6483 |
yolo_IRS_2 | 8633 | 700 | 483 | 94.7 | 92.5 | 6947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Wei, J.; Huang, H.; Zhang, D.; Chen, C. IRSDT: A Framework for Infrared Small Target Tracking with Enhanced Detection. Sensors 2023, 23, 4240. https://doi.org/10.3390/s23094240
Fan J, Wei J, Huang H, Zhang D, Chen C. IRSDT: A Framework for Infrared Small Target Tracking with Enhanced Detection. Sensors. 2023; 23(9):4240. https://doi.org/10.3390/s23094240
Chicago/Turabian StyleFan, Jun, Jingbiao Wei, Hai Huang, Dafeng Zhang, and Ce Chen. 2023. "IRSDT: A Framework for Infrared Small Target Tracking with Enhanced Detection" Sensors 23, no. 9: 4240. https://doi.org/10.3390/s23094240