Remote Sensing Estimation of CDOM and DOC with the Environmental Implications for Lake Khanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling Data
2.3. Measurement for CDOM Properties and Water Quality Parameters
2.4. Remote Sensing Data and Preprocessing
2.5. Model Construction and Evaluation
3. Results
3.1. Characteristics of CDOM and Water Quality Parameters
3.2. Correlation between Lake Environmental Hydro-Chemical Characteristics and DOM
3.3. Modeling and Verification of CDOM and DOC
3.4. The Distribution of DOC for Lake Khanka
4. Discussion
4.1. Advantages and Disadvantages of the Model
4.2. Factors Affecting the Change in DOM
4.2.1. Natural Environmental Attributions
4.2.2. Human Activity Attributions
4.3. Environmental Significance and Prospect of Lake Potential Water Quality Parameter Evaluation
4.3.1. Implications for Potential Water Quality Parameters and Carbon Cycling in Lakes
4.3.2. Shortcomings and Prospects of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casas-Ruiz, J.P.; Jakobsson, J.; del Giorgio, P.A. The role of lake morphometry in modulating surface water carbon concentrations in boreal lakes. Environ. Res. Lett. 2021, 16, 11. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, Y.; Han, X.; Zhang, J.; Liu, J.L.; Xiang, Y.F.; Zhou, M.X.; Guo, P.L.; Tang, F.; Liu, A.L. Monitoring DOM in drinking water supply systems using DOC, CODMn, UV and fluorescence measurements. Environ. Sci.-Water Res. Technol. 2021, 7, 2307–2320. [Google Scholar] [CrossRef]
- Lyu, L.L.; Wen, Z.D.; Jacinthe, P.A.; Shang, Y.X.; Zhang, N.; Liu, G.; Fang, C.; Hou, J.B.; Song, K.S. Absorption characteristics of CDOM in treated and non-treated urban lakes in Changchun, China. Environ. Res. 2020, 182, 109084. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.E.; Neale, P.J.; Hylander, S.; Rose, K.C.; Figueroa, F.L.; Robinson, S.A.; Häder, D.P.; Wängberg, S.; Worrest, R.C. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 2019, 18, 717–746. [Google Scholar] [CrossRef] [PubMed]
- Minor, E.C.; Oyler, A.R. Dissolved organic matter in large lakes: A key but understudied component of the carbon cycle. Biogeochemistry 2023, 164, 295–318. [Google Scholar] [CrossRef]
- Wan, D.; Sharma, V.K.; Liu, L.; Zuo, Y.G.; Chen, Y. Mechanistic Insight into the Effect of Metal Ions on Photogeneration of Reactive Species from Dissolved Organic Matter. Environ. Sci. Technol. 2019, 53, 5778–5786. [Google Scholar] [CrossRef] [PubMed]
- Kallio, K.; Koponen, S.; Ylostalo, P.; Kervinen, M.; Pyhalahti, T.; Attila, J. Validation of MERIS spectral inversion processors using reflectance, IOP and water quality measurements in boreal lakes. Remote Sens. Environ. 2015, 157, 147–157. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Nelson, N.B.; Siegel, D.A. The Global Distribution and Dynamics of Chromophoric Dissolved Organic Matter. In Annual Review of Marine Science; Carlson, C.A., Giovannoni, S.J., Eds.; Annual Reviews: Palo Alto, CA, USA, 2013; Volume 5, pp. 447–476. [Google Scholar]
- Massicotte, P.; Asmala, E.; Stedmon, C.; Markager, S. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. Sci. Total Environ. 2017, 609, 180–191. [Google Scholar] [CrossRef]
- Lambert, T.; Teodoru, C.R.; Nyoni, F.C.; Bouillon, S.; Darchambeau, F.; Massicotte, P.; Borges, A.V. Along-stream transport and transformation of dissolved organic matter in a large tropical river. Biogeosciences 2016, 13, 2727–2741. [Google Scholar] [CrossRef]
- Osburn, C.L.; Wigdahl, C.R.; Fritz, S.C.; Saros, J.E. Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains. Limnol. Oceanogr. 2011, 56, 2371–2390. [Google Scholar] [CrossRef]
- Sgroi, M.; Roccaro, P.; Korshin, G.V.; Greco, V.; Sciuto, S.; Anumol, T.; Snyder, S.A.; Vagliasindi, F.G.A. Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants. J. Hazard. Mater. 2017, 323, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.G.; Finlay, J.C.; Brezonik, P.L.; Olmanson, L.; Hozaiski, R.M. Limitations on using CDOM as a proxy for DOC in temperate lakes. Water Res. 2018, 144, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Zhao, Y.; Wen, Z.D.; Fang, C.; Shang, Y.X. A systematic examination of the relationships between CDOM and DOC in inland waters in China. Hydrol. Earth Syst. Sci. 2017, 21, 5127–5141. [Google Scholar] [CrossRef]
- Shao, T.T.; Song, K.S.; Du, J.; Zhao, Y.; Liu, Z.M.; Zhang, B. Retrieval of CDOM and DOC Using In Situ Hyperspectral Data: A Case Study for Potable Waters in Northeast China. J. Indian Soc. Remote Sens. 2016, 44, 77–89. [Google Scholar] [CrossRef]
- Cao, F.; Tzortziou, M.; Hu, C.M.; Mannino, A.; Fichot, C.G.; Del Vecchio, R.; Najjar, R.G.; Novak, M. Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sens. Environ. 2018, 205, 151–165. [Google Scholar] [CrossRef]
- Herrault, P.A.; Gandois, L.; Gascoin, S.; Tananaev, N.; Le Dantec, T.; Teisserenc, R. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei. Remote Sens. 2016, 8, 803. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Danhiez, F.P.; Loisel, H.; Ouillon, S.; Meriaux, X.; Cauvin, A.; Dessailly, D. CDOM-DOC relationship in contrasted coastal waters: Implication for DOC retrieval from ocean color remote sensing observation. Opt. Express 2015, 23, 33–54. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yang, L.Y.; Qin, B.Q.; Gao, G.; Liu, M.L. Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu. Huan Jing Ke Xue 2008, 29, 1457–1462. [Google Scholar]
- Coelho, C.; Heim, B.; Foerster, S.; Brosinsky, A.; de Araujo, J.C. In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region. Water 2017, 9, 913. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Zhu, W.N.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Attila, J.; Koponen, S.; Kallio, K.; Lindfors, A.; Kaitala, S.; Ylostalo, P. MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea. Remote Sens. Environ. 2013, 128, 138–149. [Google Scholar] [CrossRef]
- Huang, M.F.; Xing, X.F.; Zhao, Z.L.; Li, Z.Q.; Wang, X.X. Inversion of CDOM and COD in water using HJ-1/CCD data. In Proceedings of the 35th International Symposium on Remote Sensing of Environment (ISRSE35), Inst Remote Sensing & Digital Earth, Beijing, China, 22–26 April 2013. [Google Scholar]
- Wu, Z.S.; Wang, X.L.; Chen, Y.W.; Cai, Y.J.; Deng, J.C. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.G.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.Y.; Su, Y.T.; Shao, J.H. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Devos, L.; Meert, W.; Davis, J. Fast Gradient Boosting Decision Trees with Bit-Level Data Structures. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Wurzburg, Germany, 16–20 September 2019; pp. 590–606. [Google Scholar]
- Ruescas, A.B.; Hieronymi, M.; Mateo-Garcia, G.; Koponen, S.; Kallio, K.; Camps-Valls, G. Machine Learning Regression Approaches for Colored Dissolved Organic Matter (CDOM) Retrieval with S2-MSI and S3-OLCI Simulated Data. Remote Sens. 2018, 10, 786. [Google Scholar] [CrossRef]
- Aurin, D.; Mannino, A.; Lary, D.J. Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean. Appl. Sci. 2018, 8, 2687. [Google Scholar] [CrossRef]
- Ruescas, A.B.; Hieronymi, M.; Koponen, S.; Kallio, K.; Camps-Vallsi, G. Retrieval of coloured dissolved organic matter with machine learning methods. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 2187–2190. [Google Scholar]
- Yu, S.L.; Li, X.Y.; Wen, B.L.; Chen, G.S.; Hartleyc, A.; Jiang, M.; Li, X.J. Characterization of Water Quality in Xiao Xingkai Lake: Implications for Trophic Status and Management. Chin. Geogr. Sci. 2021, 31, 558–570. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhou, L.; Zhou, Y.Q.; Zhang, L.Q.; Yao, X.L.; Shi, K.; Jeppesen, E.; Yu, Q.; Zhu, W.N. Chromophoric dissolved organic matter in inland waters: Present knowledge and future challenges. Sci. Total Environ. 2021, 759, 13. [Google Scholar] [CrossRef]
- Spencer, R.G.M.; Butler, K.D.; Aiken, G.R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J. Geophys. Res.-Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Shang, Y.X.; Song, K.S.; Lai, F.F.; Lyu, L.; Liu, G.; Fang, C.; Hou, J.B.; Qiang, S.N.; Yu, X.F.; Wen, Z.D. Remote sensing of fluorescent humification levels and its potential environmental linkages in lakes across China. Water Res. 2023, 230, 13. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Song, K.S.; Wen, Z.D.; Liu, G.; Fang, C.; Shang, Y.X.; Li, S.J.; Tao, H.; Wang, X.; Li, Y.; et al. Remote estimation of phycocyanin concentration in inland waters based on optical classification. Sci. Total Environ. 2023, 899, 14. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Yu, W.; Liu, L.; Wang, W.; Cui, Z.; Wang, W.; Wang, R.; Li, Y. How Landscape Patterns Affect River Water Quality Spatially and Temporally: A Multiscale Geographically Weighted Regression Approach. J. Environ. Inform. 2023, 42, 158–172. [Google Scholar] [CrossRef]
- Wei, Q.; Wei, Q.; Li, S.Y.; Xu, J.Z.; Yang, Z.H.; Liu, Z.Y.; Chen, P.; Liu, Y.Z.; Ding, Y.M.; Tan, J.Y.; et al. Evaluation of surface water quality in Heilongjiang Province, China: Based on different quantities of water quality indicators. Ecol. Indic. 2023, 154. [Google Scholar] [CrossRef]
- Wen, Z.D.; Song, K.S.; Liu, G.; Shang, Y.X.; Hou, J.B.; Lyu, L.L.; Fang, C. Impact factors of dissolved organic carbon and the transport in a river-lake continuum in the Tibet Plateau of China. J. Hydrol. 2019, 579, 10. [Google Scholar] [CrossRef]
- Li, S.J.; Song, K.S.; Zhao, Y.; Mu, G.Y.; Ma, J.H. Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn. Huan Jing Ke Xue 2016, 37, 112–122. [Google Scholar]
- Danhiez, F.P.; Vantrepotte, V.; Cauvin, A.; Lebourg, E.; Loisel, H. Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption. Limnol. Oceanogr. 2017, 62, 1409–1425. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Hestir, E.L.; Brando, V.; Campbell, G.; Dekker, A.; Malthus, T. The relationship between dissolved organic matter absorption and dissolved organic carbon in reservoirs along a temperate to tropical gradient. Remote Sens. Environ. 2015, 156, 395–402. [Google Scholar] [CrossRef]
- Joshi, I.D.; D’Sa, E.J.; Osburn, C.L.; Bianchi, T.S.; Ko, D.S.; Oviedo-Vargas, D.; Arellano, A.R.; Ward, N.D. Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola Bay using combined field, VIIRS ocean color, and model observations. Remote Sens. Environ. 2017, 191, 359–372. [Google Scholar] [CrossRef]
- Song, K.S.; Wen, Z.D.; Shang, Y.X.; Yang, H.; Lyu, L.L.; Liu, G.; Fang, C.; Du, J.; Zhao, Y. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China. J. Environ. Manag. 2018, 217, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.S.; Liu, C.C.; Zhang, X.L.; Almpanidis, G. An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 2017, 82, 128–150. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Noges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Bulgarelli, B.; Zibordi, G. On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiFS, MODIS-A, MERIS, OLCI, OLI and MSI. Remote Sens. Environ. 2018, 209, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Menon, H.B.; Lotliker, A. Coupling of hydrography and bio-optical constituents in a shallow optically complex region using ten years of in-situ data. ISPRS J. Photogramm. Remote Sens. 2023, 202, 499–511. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, B.; Wang, S.R.; Huang, Y.Q. Understanding the changes of optically active substances (OACs) in Hulun Lake in the past 35 years and its indication to the degradation of aquatic ecology. J. Clean. Prod. 2022, 377, 18. [Google Scholar] [CrossRef]
- Li, H.; He, X.Q.; Shanmugam, P.; Bai, Y.; Wang, D.F.; Huang, H.Q.; Zhu, Q.K.; Gong, F. Radiometric Sensitivity and Signal Detectability of Ocean Color Satellite Sensor Under High Solar Zenith Angles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8492–8505. [Google Scholar] [CrossRef]
- Soppa, M.A.; Pefanis, V.; Hellmann, S.; Losa, S.N.; Hölemann, J.; Martynov, F.; Heim, B.; Janout, M.A.; Dinter, T.; Rozanov, V.; et al. Assessing the Influence of Water Constituents on the Radiative Heating of Laptev Sea Shelf Waters. Front. Mar. Sci. 2019, 6, 13. [Google Scholar] [CrossRef]
- Tilstone, G.H.; Angel-Benavides, I.M.; Pradhan, Y.; Shutler, J.D.; Groom, S.; Sathyendranath, S. An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea. Remote Sens. Environ. 2011, 115, 2277–2291. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Li-Zhen, L.; Qi, H.; Yong-Ming, W.U.; Dai-She, W.U.; Hai-Lin, Y.; Mi, D. Optical Absorption Properties of Chromophoric Dissolvable Organic Matter (CDOM) and Their Quantitative Relationships With Dissolved Organic Carbon in the Poyang Lake in Dry Season. J. Ecol. Rural Environ. 2017, 33, 762–768. [Google Scholar]
- Philibert, M.; Luo, S.M.; Moussanas, L.; Yuan, Q.Q.; Filloux, E.; Zraick, F.; Murphy, K.R. Drinking water aromaticity and treatability is predicted by dissolved organic matter fluorescence. Water Res. 2022, 220, 12. [Google Scholar] [CrossRef]
- Freeman, C.; Fenner, N.; Ostle, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B.; Lock, M.A.; Sleep, D.; Hughes, S.; Hudson, J. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 2004, 430, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Findlay, S.E.G. Increased carbon transport in the Hudson River: Unexpected consequence of nitrogen deposition? Front. Ecol. Environ. 2005, 3, 133–137. [Google Scholar] [CrossRef]
- Cheng, J.B.; Chen, Y.C.; He, T.B.; Liao, R.J.; Liu, R.L.; Yi, M.; Huang, L.; Yang, Z.M.; Fu, T.L.; Li, X.Y. Soil nitrogen leaching decreases as biogas slurry DOC/N ratio increases. Appl. Soil Ecol. 2017, 111, 105–113. [Google Scholar] [CrossRef]
- Clark, J.M.; Ashley, D.; Wagner, M.; Chapman, P.J.; Lane, S.N.; Evans, C.D.; Heathwaite, A.L. Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down. Glob. Chang. Biol. 2009, 15, 794–807. [Google Scholar] [CrossRef]
- Shi, S.W.; Yang, M.X.; Hou, Y.; Peng, C.H.; Wu, H.B.; Zhu, Q.A.; Liang, Q.; Xie, J.F.; Wang, M. Simulation of dissolved organic carbon concentrations and fluxes in Chinese monsoon forest ecosystems using a modified TRIPLEX-DOC model. Sci. Total Environ. 2019, 697, 15. [Google Scholar] [CrossRef]
- Fichot, C.G.; Tzortziou, M.; Mannino, A. Remote sensing of dissolved organic carbon (DOC) stocks, fluxes and transformations along the land-ocean aquatic continuum: Advances, challenges, and opportunities. Earth-Sci. Rev. 2023, 242, 27. [Google Scholar] [CrossRef]
- Liu, F.T.; Wang, D. Dissolved organic carbon concentration and biodegradability across the global rivers: A meta-analysis. Sci. Total Environ. 2022, 818, 8. [Google Scholar] [CrossRef]
- Hansell, D.A. Recalcitrant Dissolved Organic Carbon Fractions. In Annual Review of Marine Science; Carlson, C.A., Giovannoni, S.J., Eds.; Annual Reviews: Palo Alto, CA, USA, 2013; Volume 5, pp. 421–445. [Google Scholar]
- Ke, C.Q.; Cai, Y.; Xiao, Y. Passive microwave remote sensing monitoring of ice phenological changes in Xingkai Lake from 1979 to 2019. J. Remote Sens. 2022, 26, 201–210. [Google Scholar]
Linear Model | Modeling R2 | Verify R2 |
---|---|---|
a(350) = −87.54b5 + 12.28 | 0.28 | 0.13 |
a(350) = −82.74b4 + 11.38 | 0.27 | 0.13 |
a(350) = −90.71b6 + 14.06 | 0.27 | 0.11 |
a(350) = −45.71(b4 + b6) + 13.14 | 0.29 | 0.13 |
a(350) = −64.01 (b6 − b13) + 10.71 | 0.18 | 0.08 |
a(350) = −462.9(b4 × b6) + 8.60 | 0.29 | 0.14 |
a(350) = −29.57(b15/b16) + 28.89 | 0.14 | 0.04 |
a(350) = 52.34 [(b2 + b4)/(b1/b4)] + 14.56 | 0.38 | 0.20 |
ML Algorithms | Modeling R2 | Verify R2 | RMSE (m−1) | MAE (m−1) |
---|---|---|---|---|
SVR | 0.47 | 0.43 | 1.05 | 0.73 |
BP | 0.68 | 0.59 | 0.81 | 0.55 |
XGBoost | 0.74 | 0.56 | 0.73 | 0.53 |
RF | 0.82 | 0.72 | 0.60 | 0.42 |
GBDT | 0.95 | 0.84 | 0.31 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, S.; Song, K.; Shang, Y.; Lai, F.; Wen, Z.; Liu, G.; Tao, H.; Lyu, Y. Remote Sensing Estimation of CDOM and DOC with the Environmental Implications for Lake Khanka. Remote Sens. 2023, 15, 5707. https://doi.org/10.3390/rs15245707
Qiang S, Song K, Shang Y, Lai F, Wen Z, Liu G, Tao H, Lyu Y. Remote Sensing Estimation of CDOM and DOC with the Environmental Implications for Lake Khanka. Remote Sensing. 2023; 15(24):5707. https://doi.org/10.3390/rs15245707
Chicago/Turabian StyleQiang, Sining, Kaishan Song, Yingxin Shang, Fengfa Lai, Zhidan Wen, Ge Liu, Hui Tao, and Yunfeng Lyu. 2023. "Remote Sensing Estimation of CDOM and DOC with the Environmental Implications for Lake Khanka" Remote Sensing 15, no. 24: 5707. https://doi.org/10.3390/rs15245707