Impact of Shifts in Vegetation Phenology on the Carbon Balance of a Semiarid Sagebrush Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Eddy Covariance Data
2.3. Soil Chamber Data
2.4. PhenoCam Data
2.5. Meteorological Data
2.6. Flux Gap-Filling and Partitioning
3. Results
3.1. Weather and Environmental Conditions
3.2. Comparison of the Diel Patterns of CO2 Fluxes
3.3. Comparison of Seasonal Patterns of CO2 Fluxes
3.4. Relationship between Vegetation Greenness and Ecosystem CO2 Fluxes
3.5. Comparison of Soil and Ecosystem Respiration
H | ET | NEE | GPP | R | R | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
January | −1.0 | −4.0 | 6.1 | 10.4 | 1.1 | 2.4 | −11.5 | −11.8 | 12.6 | 14.2 | 10.6 | 12.6 |
February | 3.4 | 17.0 | 5.0 | 12.3 | −3.1 | −9.2 | −7.2 | −21.5 | 4.1 | 12.3 | 7.2 | 10.5 |
March | 23.1 | 39.1 | 16.5 | 23.7 | −6.7 | −23.8 | −17.4 | −33.7 | 10.7 | 9.9 | 11.7 | 12.0 |
April | 44.0 | 75.6 | 47.3 | 17.3 | −28.3 | −7.6 | −57.2 | −18.5 | 28.9 | 10.9 | 20.6 | 11.2 |
May | 88.6 | 84.5 | 31.6 | 22.1 | −17.6 | 16.1 | −32.3 | −3.5 | 14.7 | 19.6 | 17.7 | 14.9 |
June | 92.1 | 97.1 | 20.7 | 23.2 | −9.3 | 13.8 | −23.8 | −4.1 | 14.5 | 17.9 | 11.7 | 14.8 |
July | 93.7 | 113.6 | 16.8 | 10.9 | −5.1 | 13.3 | −19.8 | −0.9 | 14.7 | 14.1 | 11.9 | 9.0 |
August | 78.4 | 89.8 | 17.3 | 7.9 | 12.7 | 7.4 | −12.8 | −2.6 | 25.4 | 10.0 | 20.3 | 7.1 |
September | 50.1 | 51.3 | 13.2 | 7.9 | 4.0 | 3.2 | −9.6 | −4.8 | 13.6 | 8.0 | 12.4 | 6.0 |
October | 28.1 | 29.3 | 8.4 | 8.2 | 4.5 | 7.6 | −4.8 | −1.1 | 9.3 | 8.7 | 11.9 | 6.9 |
November | 9.7 | 5.2 | 5.3 | 8.3 | −3.0 | 7.6 | −7.5 | −2.2 | 4.5 | 9.8 | 8.4 | 14.4 |
December | 0.5 | −0.4 | 3.9 | 4.5 | 3.9 | 1.2 | −6.9 | −7.0 | 10.8 | 8.2 | 9.1 | 7.9 |
Annual | 42.4 | 50.0 | 191.9 | 156.6 | −47.0 | 32.0 | −210.9 | −111.5 | 163.9 | 143.5 | 153.6 | 127.3 |
3.6. Influence of Environmental Drivers on Respiration in the Semiarid Ecosystem
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated Dryland Expansion under Climate Change. Nat. Clim. Chang. 2015, 6, 166–171. [Google Scholar] [CrossRef]
- Yao, J.; Liu, H.; Huang, J.; Gao, Z.; Wang, G.; Li, D.; Yu, H.; Chen, X. Accelerated Dryland Expansion Regulates Future Variability in Dryland Gross Primary Production. Nat. Commun. 2020, 11, 1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of Semi-Arid Ecosystems to Interannual Variability of the Global Carbon Cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Reed, S.C.; Coe, K.K.; Sparks, J.P.; Housman, D.C.; Zelikova, T.J.; Belnap, J. Changes to Dryland Rainfall Result in Rapid Moss Mortality and Altered Soil Fertility. Nat. Clim. Chang. 2012, 2, 752–755. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M.; Voisin, N.; Zhang, X.; Asrar, G.R.; Leung, L.R. Emergence of New Hydrologic Regimes of Surface Water Resources in the Conterminous United States under Future Warming. Environ. Res. Lett. 2016, 11, 114003. [Google Scholar] [CrossRef]
- Missik, J.E.C.; Liu, H.; Gao, Z.; Huang, M.; Chen, X.; Arntzen, E.; Mcfarland, D.P.; Verbeke, B. Groundwater Regulates Interannual Variations in Evapotranspiration in a Riparian Semiarid Ecosystem. J. Geophys. Res. Atmos. 2021, 126, e2020JD033078. [Google Scholar] [CrossRef]
- Scott, R.L.; Biederman, J.A.; Hamerlynck, E.P.; Barron Gafford, G.A.; Barron-Gafford, G.A. The Carbon Balance Pivot Point of Southwestern U.S. Semiarid Ecosystems: Insights from the 21st Century Drought. J. Geophys. Res. Biogeosci. 2015, 120, 2612–2624. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Huang, M.; Cheng, Y.; Xie, X.; Liu, Y.; Zhang, X.; Bisht, G.; Chen, X.; Missik, J.; Liu, H. Effects of Irrigation on Water, Carbon, and Nitrogen Budgets in a Semiarid Watershed in the Pacific Northwest: A Modeling Study. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001953. [Google Scholar] [CrossRef]
- Ryel, R.J.; Caldwell, M.M.; Leffler, A.J.; Yoder, C.K. Rapid Soil Moisture Recharge to Depth by Roots in a Stand of Artemisia Tridentata. Ecology 2003, 84, 757–764. [Google Scholar] [CrossRef]
- Scott, R.L.; Cable, W.L.; Hultine, K.R. The Ecohydrologic Significance of Hydraulic Redistribution in a Semiarid Savanna. Water Resour. Res. 2008, 44, 2440. [Google Scholar] [CrossRef]
- Li, D.; Wrzesien, M.L.; Durand, M.; Adam, J.; Lettenmaier, D.P. How Much Runoff Originates as Snow in the Western United States, and How Will That Change in the Future? Geophys. Res. Lett. 2017, 44, 6163–6172. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D.; Dunne, K.A. Colorado River Flow Dwindles as Warming-Driven Loss of Reflective Snow Energizes Evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef]
- Missik, J.E.C.; Liu, H.; Gao, Z.; Huang, M.; Chen, X.; Arntzen, E.; Mcfarland, D.P.; Ren, H.; Titzler, P.S.; Thomle, J.N.; et al. Groundwater-River Water Exchange Enhances Growing Season Evapotranspiration and Carbon Uptake in a Semiarid Riparian Ecosystem. J. Geophys. Res. Biogeosci. 2019, 124, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Mankin, J.S.; Diffenbaugh, N.S. Influence of Temperature and Precipitation Variability on Near-Term Snow Trends. Clim. Dyn. 2015, 45, 1099–1116. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Zhu, L.; Radeloff, V.C.; Ives, A.R. Characterizing Global Patterns of Frozen Ground with and without Snow Cover Using Microwave and MODIS Satellite Data Products. Remote Sens. Environ. 2017, 191, 168–178. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Wan, S. Predominant Role of Water in Regulating Soil and Microbial Respiration and Their Responses to Climate Change in a Semiarid Grassland. Glob. Chang. Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D.; Tang, J. How Soil Moisture, Rain Pulses, and Growth Alter the Response of Ecosystem Respiration to Temperature. Glob. Biogeochem. Cycles 2004, 18, 1–10. [Google Scholar] [CrossRef]
- Zahn, E.; Bou-Zeid, E.; Good, S.P.; Katul, G.G.; Thomas, C.K.; Ghannam, K.; Smith, J.A.; Chamecki, M.; Dias, N.L.; Fuentes, J.D.; et al. Direct Partitioning of Eddy-Covariance Water and Carbon Dioxide Fluxes into Ground and Plant Components. Agric. For. Meteorol. 2022, 315, 108790. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology feedbacks on climate change. Science 2009, 324, 887. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; El-Madany, T.S.; Filippa, G.; Ma, X.; Ahrens, B.; Carrara, A.; Gonzalez-Cascon, R.; Cremonese, E.; Galvagno, M.; Hammer, T.W.; et al. Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote Sens. 2018, 10, 1293. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M.; et al. Tracking Vegetation Phenology across Diverse North American Biomes Using PhenoCam Imagery. Sci. Data 2018, 5, 180028. [Google Scholar] [CrossRef]
- Seyednasrollah, B.; Young, A.M.; Hufkens, K.; Milliman, T.; Friedl, M.A.; Frolking, S.; Richardson, A.D. Tracking Vegetation Phenology across Diverse Biomes Using Version 2.0 of the PhenoCam Dataset. Sci. Data 2019, 6, 222. [Google Scholar] [CrossRef] [Green Version]
- Seyednasrollah, B.; Milliman, T.; Richardson, A.D. Data Extraction from Digital Repeat Photography Using XROI: An Interactive Framework to Facilitate the Process. ISPRS J. Photogramm. Remote Sens. 2019, 152, 132–144. [Google Scholar] [CrossRef]
- Richardson, A.D. Tracking Seasonal Rhythms of Plants in Diverse Ecosystems with Digital Camera Imagery. New Phytol. 2019, 222, 1742–1750. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Scott, R.L.; Moore, D.J.P.; Biederman, J.A.; Smith, W.K. Understanding the relationship between vegetation greenness and productivity across dryland ecosystems through the integration of PhenoCam, satellite, and eddy covariance data. Remote Sens. Environ. 2019, 223, 50–62. [Google Scholar] [CrossRef]
- Gao, Z.; Russell, E.S.; Missik, J.E.C.; Huang, M.; Chen, X.; Strickland, C.E.; Clayton, R.; Arntzen, E.; Ma, Y.; Liu, H. A Novel Approach to Evaluate Soil Heat Flux Calculation: An Analytical Review of Nine Methods. J. Geophys. Res. 2017, 122, 6934–6949. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Bound.-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Massman, W.J. A Simple Method for Estimating Frequency Response Corrections for Eddy Covariance Systems. Agric. For. Meteorol. 2000, 104, 185–198. [Google Scholar] [CrossRef]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In Handbook of Micrometeorology; Lee, X., Massman, W., Law, B., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 7–31. [Google Scholar]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects due to Heat and Water Vapour Transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2; University of Bayreuth: Bayreuth, Germany, 2004; pp. 26–42. ISSN 161489166. [Google Scholar]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and Extensible Post-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Gao, Z.; Huang, J.; Liu, H.; Wang, G. Technical Note: Uncertainties in Eddy Covariance CO2 Fluxes in a Semiarid Sagebrush Ecosystem Caused by Gap-Filling Approaches. Atmos. Chem. Phys. 2021, 21, 15589–15603. [Google Scholar] [CrossRef]
- Ma, S.; Baldocchi, D.D.; Xu, L.; Hehn, T. Inter-Annual Variability in Carbon Dioxide Exchange of an Oak/Grass Savanna and Open Grassland in California. Agric. For. Meteorol. 2007, 147, 157–171. [Google Scholar] [CrossRef]
- Kim, Y.; Johnson, M.S.; Knox, S.H.; Black, T.A.; Dalmagro, H.J.; Kang, M.; Kim, J.; Baldocchi, D. Gap-filling Approaches for Eddy Covariance Methane Fluxes: A Comparison of Three Machine Learning Algorithms and a Traditional Method with Principal Component Analysis. Glob. Chang. Biol. 2020, 26, 1499–1518. [Google Scholar] [CrossRef]
- Moffat, A.M.; Papale, D.; Reichstein, M.; Hollinger, D.Y.; Richardson, A.D.; Barr, A.G.; Beckstein, C.; Braswell, B.H.; Churkina, G.; Desai, A.R.; et al. Comprehensive Comparison of Gap-Filling Techniques for Eddy Covariance Net Carbon Fluxes. Agric. For. Meteorol. 2007, 147, 209–232. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Burman, P.; Davidson, E.A.; Evans, R.S.; Flanagan, L.B.; Munger, J.W.; Savage, K.; Urbanski, S.P.; et al. Comparing Simple Respiration Models for Eddy Flux and Dynamic Chamber Data. Agric. For. Meteorol. 2006, 141, 219–234. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Lafleur, P.M.; Humphreys, E.R. Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Glob. Chang. Biol. 2008, 14, 740–756. [Google Scholar] [CrossRef]
- Shuai, P.; Chen, X.; Song, X.; Hammond, G.E.; Zachara, J.; Royer, P.; Ren, H.; Perkins, W.A.; Richmond, M.C.; Huang, M. Dam operations and subsurface hydrogeology control dynamics of hydrologic exchange flows in a Regulated River reach. Water Resour. Res. 2019, 55, 2593–2612. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Kim, T.; Jin, Z.; Lin, C.; Wang, X.; Ciais, P.; Mueller, N.D.; Aghakouchak, A.; Huang, J.; Mulla, D.; et al. The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nat. Clim. Chang. 2022, 12, 485–490. [Google Scholar] [CrossRef]
T | T | ||||
---|---|---|---|---|---|
A | B | A | B | ||
R | 0–3% | 0.19 (0.11, 0.27) | 0.03 (0.02, 0.05) | 0.11 (0.06, 0.17) | 0.04 (0.02, 0.05) |
3–6% | 0.22 (0.18, 0.26) | 0.04 (0.03, 0.05) | 0.22 (0.18, 0.26) | 0.03 (0.02, 0.04) | |
6–10% | 0.21 (0.17, 0.25) | 0.07 (0.06, 0.08) | 0.20 (0.16, 0.24) | 0.05 (0.05, 0.06) | |
10–15% | 0.24 (0.21, 0.26) | 0.09 (0.08, 0.10) | 0.28 (0.24, 0.31) | 0.06 (0.06, 0.07) | |
R | 0–3% | 0.15 (0.09, 0.20) | 0.03 (0.01, 0.04) | 0.08 (0.05, 0.12) | 0.04 (0.02, 0.05) |
3–6% | 0.28 (0.21, 0.34) | 0.02 (0.01, 0.03) | 0.30 (0.23, 0.38) | 0.01 (0.00, 0.02) | |
6–10% | 0.34 (0.27, 0.42) | 0.04 (0.02, 0.05) | 0.34 (0.26, 0.42) | 0.03 (0.02, 0.04) | |
10–15% | 0.27 (0.22, 0.33) | 0.08 (0.07, 0.10) | 0.30 (0.25, 0.35) | 0.06 (0.05, 0.07) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Yuan, W.; Gao, Z.; Liu, H.; Chen, X.; Ma, Y.; Arntzen, E.; Mcfarland, D. Impact of Shifts in Vegetation Phenology on the Carbon Balance of a Semiarid Sagebrush Ecosystem. Remote Sens. 2022, 14, 5924. https://doi.org/10.3390/rs14235924
Yao J, Yuan W, Gao Z, Liu H, Chen X, Ma Y, Arntzen E, Mcfarland D. Impact of Shifts in Vegetation Phenology on the Carbon Balance of a Semiarid Sagebrush Ecosystem. Remote Sensing. 2022; 14(23):5924. https://doi.org/10.3390/rs14235924
Chicago/Turabian StyleYao, Jingyu, Wenping Yuan, Zhongming Gao, Heping Liu, Xingyuan Chen, Yongjing Ma, Evan Arntzen, and Douglas Mcfarland. 2022. "Impact of Shifts in Vegetation Phenology on the Carbon Balance of a Semiarid Sagebrush Ecosystem" Remote Sensing 14, no. 23: 5924. https://doi.org/10.3390/rs14235924