Tensor Completion with Side Information: A Riemannian Manifold Approach
Tensor Completion with Side Information: A Riemannian Manifold Approach
Tengfei Zhou, Hui Qian, Zebang Shen, Chao Zhang, Congfu Xu
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
Main track. Pages 3539-3545.
https://doi.org/10.24963/ijcai.2017/495
By restricting the iterate on a nonlinear manifold, the recently proposed Riemannian optimization methods prove to be both efficient and effective in low rank tensor completion problems. However, existing methods fail to exploit the easily accessible side information, due to their format mismatch. Consequently, there is still room for improvement. To fill the gap, in this paper, a novel Riemannian model is proposed to tightly integrate the original model and the side information by overcoming their inconsistency. For this model, an efficient Riemannian conjugate gradient descent solver is devised based on a new metric that captures the curvature of the objective. Numerical experiments suggest that our method is more accurate than the state-of-the-art without compromising the efficiency.
Keywords:
Machine Learning: Learning Preferences or Rankings
Machine Learning: Machine Learning