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Abstract
By restricting the iterate on a nonlinear mani-
fold, the recently proposed Riemannian optimiza-
tion methods prove to be both efficient and effective
in low rank tensor completion problems. However,
existing methods fail to exploit the easily accessi-
ble side information, due to their format mismatch.
Consequently, there is still room for improvement.
To fill the gap, in this paper, a novel Riemannian
model is proposed to tightly integrate the origi-
nal model and the side information by overcoming
their inconsistency. For this model, an efficient Rie-
mannian conjugate gradient descent solver is de-
vised based on a new metric that captures the curva-
ture of the objective. Numerical experiments sug-
gest that our method is more accurate than the state-
of-the-art without compromising the efficiency.

1 Introduction
Low Rank Tensor Completion (LRTC) problem, which aims
to recover a tensor from its linear measurements, arises nat-
urally in many artificial intelligence applications. In hyper-
spectral image inpainting, LRTC is applied to interpolate the
unknown pixels based on the partial observation [Xu et al.,
2015]. In recommendation tasks, LRTC helps users find inter-
esting items [Liu et al., 2015]. In computational phenotyping,
one adopts LRTC to discovery phenotypes in heterogeneous
electronic health records [Wang et al., 2015].
Euclidean Models: LRTC can be formulated by a variety
of optimization models over the Euclidean space. Amongst
them, convex models that encapsulate LRTC as a regression
problem penalized by a tensor nuclear norm are the most pop-
ular and well-understood [Romera-Paredes and Pontil, 2013;
Zhang et al., 2014]. Though most of them have sound theo-
retical guarantees [Zhang and Aeron, 2016; Chen et al., 2013;
Yuan and Zhang, 2015], in general, their solvers are ill-suited
for large tensors because these procedures involve Singu-
lar Value Decomposition (SVD) of huge matrices per iter-
ation [Liu et al., 2013]. Another class of Euclidean mod-
els is formulated as the decomposition problem that factor-
izes a low rank tensor into small factors [Jain and Oh, 2014;
∗Corresponding author

Filipović and Jukić, 2015; Xu et al., 2015]. Many solvers for
such decomposition based model have been proposed, and
low per-iteration computational cost is illustrated [Beutel et
al., 2014; Liu et al., 2014; Smith et al., 2016].
Riemannian Models: LRTC can also be modeled by opti-
mization constrained on Riemannian manifolds [Kressner et
al., 2014; Kasai and Mishra, 2016], which is easily handled
by many manifold based solvers [Absil et al., 2009]. Empiri-
cal comparison has shown that Riemannian solvers use signif-
icantly less CPU time to recover the underlying tensor in con-
trast to the Euclidean solvers [Kasai and Mishra, 2016]. The
main reason resides in that they avoid SVD of huge matrices
by explicitly exploiting the geometrical structure of LRTC,
which makes them more suitable for massive problem.

Of all the Riemanian models, two search spaces, fix multi-
linear rank manifold [Kressner et al., 2014] and Tucker man-
ifold [Kasai and Mishra, 2016], are usually employed. The
former is a sub-manifold of Euclidean space, and the lat-
ter is a quotient manifold induced by the Tucker decom-
position. Generally, quotient manifold based solvers have
higher convergence rates because it is usually easier to de-
sign a pre-conditioner for them [Kasai and Mishra, 2016;
Mishra and Sepulchre, 2016].
Side Information: In the Euclidean models of LRTC, side
information has been proved to be helpful in improving the
accuracy [Narita et al., 2011; Acar et al., 2011; Beutel et
al., 2014]. One common form of the side information is the
feature matrix, which measures the statistical properties of
tensor modes [Kolda and Bader, 2009]. For example, in Net-
flix tasks, feature matrix can be built from the demography of
users [Bell and Koren, 2007]. Another form is the similarity
matrix, which quantifies the resemblance between two enti-
ties of a tensor mode. For instance, the social network gen-
erates the similarity matrix by utilizing the correspondence
between users [Rai et al., 2015]. In practice, these two ma-
trices can be transformed to each other, and we only consider
the feature matrix case.

However, as far as we know, side information has not been
incorporated in any Riemannian model for LRTC. The first
difficulty lies in the model design. Fusing the side informa-
tion into the Riemannian model inevitably compromises the
integrity of the low rank tensor due to the compactness of the
manifold. The second difficulty results from the solver de-
sign. Incorporating the side information may aggravate the
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ill-conditioning of LRTC problem and degenerates the con-
vergence significantly.
Contributions: To address these difficulties, a novel Rieman-
nian LRTC method is proposed from the perspective of both
model and solver designs. By exploring the relation between
the subspace spanned by the tensor fibers and the column
space of the feature matrix, we explicitly integrate the side in-
formation in a compact way. Meanwhile, a first order solver
is devised under the manifold optimization framework. To
ease the ill-conditioning, we design a novel metric based on
an approximated Hessian of the cost function. The metric
implicitly induce an adaptive preconditioner for our solver.
Empirical studies illustrate that our method achieves much
more accurate solutions within comparable processing time
than the state-of-the-art.

2 Notations and Preliminaries
In this paper, we only focus on the 3rd order tensor, but gen-
eralizing our method to higher order is straight forward. We
use the notation X ∈ Rn×m to denote a matrix, and the nota-
tion X ∈ Rn1×···×nd to denote a d-th order tensor. We also
denote by X (i1, · · · , id) the element in position (i1, · · · , id)
of X . For many cases, we use abbreviation like {Oi}3i=1 to
denote the sequence O1,O2,O3.
Mode-k Fiber and matricization: A fiber of a tensor
is obtained by varying one index while fixing the others,
i.e. X (i1, · · · , ik−1, :, ik+1, · · · , id) is the mode-k fiber of
a d-th order tensor X . A mode-k matricization X(k) ∈
Rnk×(n1···nk−1nk+1···nd) of a tensor X is obtained by arrang-
ing the mode-n fibers of X so that each of them is a column
of X(k) [Kolda and Bader, 2009] The mode-k product of ten-
sor X and matrix A is denoted by X ×k A, whose mode-k
matricization can be expressed as (X ×k A)(k) = AX(k).
Inner product and norm: The inner product of two
tensors with the same size is defined by 〈X ,Y〉 =∑
i1,··· ,id X (i1, · · · , id)Y(i1, · · · , id). The Frobenius norm

of a tensor X is defined by ‖X‖F =
√
〈X ,X 〉.

Multi-linear rank and Tucker decomposition: The multi-
linear rank rankvec(X ) of a tensor X ∈ Rn1×n2×n3 is de-
fined as a vector (rank(X(1)), rank(X(2)), rank(X(3))). If
rankvec(X ) = (r1, r2, r3), tucker decomposition factorizes
X into a small core tensor G ∈ Rr1×r2×r3 and three ma-
trices Ui ∈ Rni×ri with orthogonal columns, that is X =
G×3

i=1 Ui. Note that, the tucker decomposition of a tensor is
not unique. In fact, if X = G ×3

i=1 Ui, we can easily obtain
X = H×3

i=1Vi, with H = G×3
i=1O

>
i , Vi = UiOi, where

Oi ∈ Rri×ri is any orthogonal matrix. Thus, we obtain the
equivalent class

[G, {Ui}3i=1] , {(G ×3
i=1 O>i , {UiOi}3i=1)|O>i Oi = Ii}.

We denote [G, {Ui}3i=1] by [X ], when X = G ×3
i=1 Ui.

Usually, [X ] is called the Tucker representation of X , while
X is call the tensor representation of [X ]. We also use X to
denote a specific decomposition of X , additionally X ∈ [X ].

2.1 Search Space of Riemannian Models
The Tucker manifold that we used in our Riemannian model
is a quotient manifold induced by the Tucker decomposition.

In order to lay the ground for Tucker manifold, we first de-
scribe its counterpart, the fix multi-rank manifold, which will
be helpful in understanding the whole derivation.

A fixed multi-linear rank manifold Fr consists of tensors
with the same fixed multi-linear rank. Specifically

Fr = {X ∈ Rn1×n2×n3 | rankvec(X ) = r}.

To define the Tucker manifold, we first define a total space

Mr = Rr1×r2×r3 × S(r1, n1)× S(r2, n2)× S(r3, n3), (1)

in which S(ri, ni) is the Stiefel manifold of ni × ri matrices
with orthogonal columns. Then, we can depict the Tucker
manifold of multi-linear rank r as follows.

Mr/ ∼,
{

[G, {Ui}3i=1]|(G, {Ui}3i=1) ∈Mr

}
. (2)

The Tucker manifold is a quotient manifold of the total
space (1). We use the abstract quotient manifold, rather than
the concrete total space, as search space because the non-
uniqueness of the Tucker decomposition is undesirable for
optimization. Note that such non-uniqueness will introduce
more local optima into the minimization. The relation of
manifold Fr andMr/ ∼ is characterized as follows.

Proposition 1. The quotient manifold Mr/ ∼ is diffeomorphic
to the fix multi-linear rank manifold Fr , with diffeomorphism ρ(·)
from Fr to Mr/ ∼ defined by ρ(X ) = [G, {Ui}3i=1] where
[G, {Ui}3i=1] is the tucker representation of X .

This proposition says that each tensor X ∈ Fr can be rep-
resented by a unique equivalent class [G, {Ui}3i=1] ∈ M/ ∼
and vice-versa.

2.2 Vanilla Riemannian Tensor Completion
The purest incarnation of Riemannian tensor completion
model is the Riemannian model over the fix multi-linear rank
manifold. Let R ∈ Rn1×n2×n3 be a partially observed ten-
sor. Let Ω be the set which contains the indices of observed
entries. The model can be expressed as:

min
X

1

2
‖PΩ(X −R)‖2F s.t. X ∈ Fr, (3)

with PΩ maps X to the sparsified tensor PΩ(X ), where
PΩ(X )(i1, i2, i3) = X (i1, i2, i3) if (i1, i2, i3) ∈ Ω, and
PΩ(X )(i1, i2, i3) = 0 otherwise.

Another popular model, Tucker model, is based on the quo-
tient manifoldMr/ ∼, which can be expressed as:

min
X

1

2
‖PΩ(ρ−1([X ])−R)‖2F s.t. [X ] ∈Mr/ ∼, (4)

with ρ defined in Prop. 1.
Note that since the dawn of Riemannian framework for

LRTC, a quandary exists: on one hand, sparse measurement
limits the capacity of the solution; on the other hand, rich
side information can not be incorporated into this framework.
In many artificial intelligence applications, demands for high
accuracy further exacerbates such dilemma.
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3 Riemannian Model with Side Information
We focus on the case that the side information is encoded in
feature matrices Pi ∈ Rni×ki . Suppose R ∈ Fr has tucker
factors (G, {Ui}3i=1).Without loss of generality, we assume
that ki ≥ ri and Pi has orthogonal columns.

In the ideal case, we assume that
span(Ui) ⊂ span(Pi). (5)

Such relation means that the feature matrices contain all
the information in the latent space of the underlying ten-
sor. Equivalently, there exists a matrix Wi such that Ui =
PiWi. However, in practice, due to the existence of noise,
one can only expect such relation to hold approximately, i.e.
Ui ≈ PiWi. Incorporating such relation to a tensor comple-
tion model via penalization, we have the following formula-
tion

min
G,Ui,Wi

L(G, {U}3i=1) +

3∑
i=1

αi|Ω|
2
‖Ui −PiWi‖2F ,

s.t. (G, {Ui}3i=1) ∈Mr,

(6)

where L(G, {Ui}3i=1) = ‖PΩ(G×3
i=1Ui−R)‖2F /2. Fixing

G and Ui, with respect to Wi, (6) has a close form solution

Wi = (P>i Pi)
−1P>i Ui = P>i Ui. (7)

Since minx,y l(x, y) = minx l(x, y(x)) where y(x) =
arg miny l(x, y), one can substitute (7) into the above prob-
lem and obtain the following equivalence

min
G,Ui

L(G, {U}3i=1) +

3∑
i=1

αi|Ω|
2

trace(UT
i (Ii −PiP

T
i )Ui)

, f(G, {Ui}3i=1)

s.t. (G, {Ui}3i=1) ∈Mr.
(8)

Although the cost function is already smooth over the total
space Mr, due to its invariance over the equivalent class
[G, {Ui}3i=1], there can be infinite local optima, which is
extremely undesirable. Indeed, if (G, {Ui}3i=1) is a local
optimal of the objective, then so is every point in the in-
finite set [G, {Ui}3i=1]. One way to reduce the number
of local optima is to mathematically treated the entire set
[G, {Ui}3i=1] as a point. Consequently, we redefine the cost
by f̃([G, {Ui}3i=1]) = f(G, {Ui}3i=1) and obtain the follow-
ing Remainnian optimization problem over the quotient man-
ifoldMr/ ∼:

min
[X ]

f̃([X ]) s.t. [X ] ∈Mr/ ∼ . (9)

Remark 1. In Riemannian optimization literature, prob-
lem (8) is called the lifted representation of problem (9) over
the total space [Absil et al., 2009]. This model is closely re-
lated to the Laplace regularization model [Narita et al., 2011].
Concretely, they share the same form:

min
G,Ui

L(G, {Ui}3i=1) +
3∑
i=1

Ci
2

trace(U>i LiUi). (10)

The difference lies in that Li is a projection matrix in our
case, while, in the Laplace regularization model, Li is a
Laplacian matrix.
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Figure 1: Optimization Framework for Quotient Manifold: most
Riemannian solvers are based on the iteration formula: [x+] ←
R[x](tη[x]), where t > 0 is the stepsize, η[x] is the search direc-
tion picked from current tangent space T[x]M/ ∼, and R[x](·) is
the retraction, i.e. a map from current tangent space toM/ ∼. Due
to the abstractness of quotient manifold, such iteration is often lifted
to (represented in) the total space as x = Rx(tηx) where x ∈ [x],
ηx is the horizontal lift of η[x], and Rx(·) is the lifted retraction.
Such representation is possible only if M/ ∼ has the structure of
Riemannian quotient, that is the total space is endowed with an in-
variant Riemannian metric.

Remark 2. Since each [X ] ∈ Mr/ ∼ has a unique ten-
sor representation in X ∈ Fr, we show that the abstract
model (9) can be represented as a concrete model over the
manifold Fr. Specifically, the following Proposition inter-
prets the proposed model as an optimization problem with a
regularizer that encourages the mode-i space of the estimated
tensor close to span(Pi).
Proposition 2. if [X ] is a critical point of problem (9) then its
tensor representation X is a critical point of the following problem.

min
X∈Fr

1

2
‖PΩ(X−R)‖2F

+

3∑
i=1

αi|Ω|
2

dist2(span(X(i)), span(Pi))

where dist(·, ·) is the Chodal distance [Ye and Lim, 2014] between
two subspaces. And vice versa.

4 Riemannian Conjugate Gradient Descent
We depict the optimization framework for quotient manifolds
in Fig. 1. Under this framework, we solve the proposed prob-
lem (9) by Riemannian Conjugate Gradient descent (CG).
With the details specified later, we list our CG solver for prob-
lem (9) in Alg. 1, where the CG direction is composed in
the Polak-Ribiere+ manner with the momentum weight β(k)

computed by Flecher-Reeves formula [Absil et al., 2009], and
Tk(·) is the projector of horizontal spaceHX (k) . The conver-
gence property of CGSI (Alg. 1) to a stationary point follows
the general analysis of CG method [Sato and Iwai, 2015]. To
represent CGSI in concrete tensor formulations, four items
must be specified: the Riemannian metric 〈·, ·〉X , the Rie-
mannian gradient grad f(X ), the retraction RX (·), and the
projector onto horizontal space TX .

4.1 Metric Tuning
Riemannian metric 〈·, ·〉X ofMr is an inner product defined
over each tangent space TXMr. A high-quality Rieman-
nian solver for a quotient manifold should be equipped with
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Algorithm 1 CGSI: a Riemannian CG method

Require: Initializer X (0) = (G(0), {U(0)
i }

3
i=1) and tolerance ε

1: k = 0;
2: η(−1) = (0, {0}3i=1);
3: repeat
4: compute current Riemannian gradient ξ(k) = grad f(X (k));
5: compose CG direction η(k) = −ξ(k) + β(k)Tk(η(k−1));
6: choose a step size tk > 0;
7: update by retraction X (k+1) = RX (k)(tkη

(k));
8: k = k + 1;
9: until 〈ξ(k−1), ξ(k−1)〉X (k−1) ≤ ε;

10: return X (k) .

a well-tuned metric, because (1) the metric determines the
differential structure of the quotient manifold, and more im-
portantly (2) it implicitly endows the solver with a precondi-
tioner, which heavily affects the convergent rate [Mishra and
Sepulchre, 2014; Mishra, 2014].

From the perspective of preconditioning, it seems that
the best candidate is the Newton metric 〈η, ξ〉X =

D2f(X )[η, ξ]∀η, ξ ∈ TXMr where D2f(X ) is the sec-
ond order differential of the cost function. However, under
such metric, computing the search direction involves solving
a large system of linear equations, which precludes the New-
ton metric from the application to huge datasets. Therefore,
we propose to use the following alternative:

〈ηX , ξX 〉X = D2
bg(X )[ηX , ξX ]

=

3∑
i=1

〈ηi, ξiG(i)G>(i)〉+ 〈ηG , ξG〉

+

3∑
i=1

Nαi〈ηi, (Ii −PiP
>
i )ξi〉,

(11)

where g(X ) is a scaled approximation to the original cost
function, and D2

bg(X ) is the block approximation of its sec-
ond derivative, specifically g(X ) , 1

2‖G ×
3
1 Ui −R‖2F +∑3

i=1
αiN

2 trace(UT
i (Ii −PiP

T
i )Ui) with N = n1n2n3.

Our metric is more scalable than Newton metric. The fol-
lowing Proposition indicates that the scale gradient induced
by this metric can be computed with O(

∑3
i=1 nikiri + r3

i )
additional operations.

Proposition 3. Suppose that the cost function f(·) has Euclidean
gradient ∇f(X ) = (∇Gf, {∇Uif}3i=1). Then its scaled gradient
∇̃f(X ) under the metric (11) can be computed by:

∇̃Gf(X ) = ∇Gf(X )

∇̃Uif(X ) = EiG
−1
i + Fi(Gi +NαiIi)

−1

where Ei = PiP
>
i ∇Uif , Fi = ∇Uif−Ei, and Gi = G(i)G(i)

>.

The final proposition suggests that the proposed metric
makes the representation of solvers in the total space possible.

Proposition 4. The quotient manifoldMr/ ∼ admits a structure
of Riemannian quotient manifold, if Mr is endowed with the Rie-
mannian metric defined in (11).

Projector Formulation

ΨX (ZG , {Zi}3i=1)
projection of

an ambient vector
(ZG , {Zi}3i=1)

onto TXMr

(ZG , {Zi −ViSiG
−1
i −WiSiG

−1
αi
}3i=1)

where Si is the solution of :
sym(V

T
i ViSiG

−1
i −U

>
i Zi)

= − sym(W
T
i WiSiG

−1
αi

)

Si = S>i

ΠX (ηX )
Projection of a

tangent vector ηX
of total space

ontoHX

(ηG +
∑

1≤i≤3

G ×i Ωi, {ηi −UiΩi}3i=1)

where (Ω1,Ω2,Ω3) is the solution of

skw(VT
i ViΩiGi + GiΩi

+W>
i WiΩiGαi

)

−G(i)(Iji ⊗Ωki
)G(i)

>

−G(i)(Ωji
⊗ Iki )G(i)

>

= skw(V>i ηiGi + W>
i ηiGαi

)

+ skw(G(i)(ηG)>(i))

Ω>i = −Ωi∀i ∈ {1, 2, 3}

Table 1: Expressions of Projectors. We define the following ma-
trices: Vi := PiP

>
i Ui,Wi := Ui − Vi, Gi := G(i)G(i)

>,
Gαi := NαiIi + G(i)G(i)

>. ji = max{k|k ∈ {1, 2, 3}, k 6= i}
and ki = min{k|k ∈ {1, 2, 3}, k 6= i}. And the operator sym(·)
and skw(·) extract the symmetric and skew components of a ma-
trix respectively, i.e. sym(A) = (A + A>)/2 and skw(A) =
(A −A>)/2. Note that the above linear systems can be solved by
MATLAB command pcg in O(

∑
1≤i≤3(nik

2
i + r3

i )) flops.

4.2 Other Optimization Related Items
Projectors: To derive the optimization related items, two or-
thogonal projectors, ΨX (·) and ΠX (·), are required. The for-
mer projects a vector onto the tangent space TXMr, and the
latter is a projector from the tangent space onto the horizon-
tal space HX . The orthogonality of both projectors is mea-
sured by the metric (11). For lack of space, the mathematical
derivation is deferred to a long version of this paper.
Riemannian Gradient: According to [Absil et al., 2009],
the Riemannian gradient can be computed by projecting the
scaled gradient onto tangent space, specifically

grad f(X ) = ΨX (∇̃f(X )). (12)

Retraction: We use the retraction defined by

RX (ηX ) = (G + ηG , {uf(Ui + ηi)}3i=1). (13)

where uf(·) extracts the orthogonal component from a matrix.
Such retraction is proposed by [Kasai and Mishra, 2016]. In
the long version of this paper, we give rigorous analysis to
prove that the above retraction is compatible with the pro-
posed metric.

5 Experiments
We validate the effectiveness of the proposed solver CGSI by
comparing it with the state-of-the-art. The baseline can be
partitioned into three classes. The first class contains Rie-
mannian solvers including GeomCG [Kressner et al., 2014],
FTC [Kasai and Mishra, 2016], and gHOI [Liu et al., 2016].
The second class consists of Euclidean solvers that take no
account of the side information, including AltMin [Romera-
Paredes et al., 2013] and HalRTC [Liu et al., 2013]. The
third class comprises of two methods that incorporate side in-
formation, including RUBIK [Wang et al., 2015] and TFAI
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Table 2: Performance of the compared methods on hyperspectral images.

AltMin FTC GeomCG gHOI HalRTC RUBIK TFAI CGSI
data OS NRSE Time(s) NRSE Time NRSE Time NRSE Time NRSE Time NRSE Time NRSE Time NRSE Time

S1

3 0.161 183 0.091 52 0.113 61 0.115 65 0.080 177 0.086 197 0.161 164 0.062 77
5 0.156 307 0.067 76 0.077 93 0.103 109 0.078 177 0.085 194 0.159 273 0.040 100
7 0.156 429 0.060 100 0.056 124 0.092 152 0.077 177 0.085 195 0.159 382 0.039 110
9 0.156 550 0.046 126 0.044 151 0.078 195 0.077 178 0.085 198 0.156 479 0.036 126

S2

3 0.173 183 0.093 50 0.114 61 0.125 65 0.066 173 0.061 197 0.173 165 0.048 83
5 0.166 306 0.082 76 0.076 92 0.100 103 0.066 171 0.061 196 0.171 203 0.043 96
7 0.166 428 0.073 101 0.064 123 0.091 152 0.057 172 0.061 197 0.169 386 0.040 110
9 0.166 578 0.062 125 0.056 154 0.073 197 0.057 171 0.060 197 0.169 433 0.038 130

S3

3 0.033 226 0.041 68 0.044 181 0.043 187 0.034 174 0.062 189 0.063 131 0.025 83
5 0.033 346 0.030 99 0.029 251 0.037 308 0.033 177 0.061 185 0.062 209 0.021 108
7 0.033 486 0.023 124 0.021 389 0.033 177 0.031 177 0.059 187 0.057 210 0.018 131
9 0.033 587 0.019 156 0.021 386 0.031 491 0.029 172 0.034 189 0.033 229 0.017 143

S4

3 0.033 238 0.031 78 0.036 181 0.038 193 0.047 172 0.034 182 0.033 155 0.012 105
5 0.033 359 0.015 108 0.015 254 0.031 293 0.032 171 0.037 183 0.033 247 0.012 118
7 0.033 486 0.012 128 0.012 391 0.021 177 0.029 177 0.027 180 0.033 181 0.011 131
9 0.033 600 0.012 170 0.012 398 0.018 492 0.026 177 0.024 192 0.033 231 0.010 144

S5

3 0.059 236 0.051 75 0.077 180 0.169 187 0.086 169 0.126 180 0.062 99 0.024 104
5 0.059 362 0.041 104 0.051 254 0.113 289 0.076 171 0.059 183 0.061 128 0.022 114
7 0.059 483 0.034 137 0.037 325 0.089 398 0.047 173 0.054 190 0.061 181 0.021 128
9 0.059 603 0.028 166 0.029 400 0.065 494 0.042 173 0.058 192 0.061 229 0.021 142

S6

3 0.090 237 0.067 76 0.057 181 0.132 189 0.095 177 0.090 180 0.091 170 0.036 107
5 0.090 356 0.039 105 0.040 251 0.095 298 0.083 177 0.081 180 0.091 213 0.034 119
7 0.090 489 0.039 130 0.040 325 0.095 394 0.083 178 0.081 181 0.091 300 0.034 136
9 0.090 600 0.039 165 0.040 396 0.095 501 0.083 178 0.081 183 0.091 383 0.034 143

S7

3 0.071 245 0.073 82 0.069 181 0.075 193 0.077 172 0.069 181 0.072 165 0.031 119
5 0.072 377 0.034 102 0.032 225 0.064 293 0.069 172 0.067 180 0.072 203 0.028 158
7 0.072 581 0.028 161 0.028 336 0.052 452 0.062 171 0.064 181 0.072 302 0.026 157
9 0.072 603 0.027 170 0.027 400 0.041 494 0.057 173 0.058 183 0.072 183 0.026 189

S8

3 0.039 236 0.030 74 0.042 181 0.050 187 0.071 174 0.034 179 0.040 131 0.013 103
5 0.039 354 0.018 107 0.019 247 0.038 293 0.061 174 0.040 182 0.045 213 0.012 114
7 0.039 701 0.013 102 0.013 381 0.030 234 0.031 181 0.030 182 0.060 363 0.011 169
9 0.039 853 0.012 112 0.012 502 0.026 369 0.027 175 0.031 183 0.039 502 0.011 180

Original Observed CGSI RUBIK FTC

Figure 2: Visual results of the recovered 27th frame of scene7 when OS is set to 3.

[Narita et al., 2011]. All the experiments are performed in
Matlab on the same machine with 3.0 GHz Intel E5-2690
CPU and 128GB RAM.

5.1 Hyperspectral Image Inpainting
A hyperspectral image is a tensor whose the slices are pho-
tographs of the same scene under different wavelets. We
adopt the dataset provided in [Foster et al., 2006] which con-
tains images about eight different rural scenes taken under
33 various wavelets. To make all methods in our baseline
applicable to the completion problem, we resize each hyper-
spectral images to a small dimension such that n1 = 306,
n2 = 402, and n3 = 33. Empirically, we treat these graphs
as tensors of rank r = (30, 30, 6). The observed pixels, or
the training set, are sampled from the tensors uniformly at
random. And the sample size is set to |Ω| = OS×p in which
OS is so-called Over-Sampling ratio and p =

∑3
i=1(niri −

r2
i ) + r1r2r3 is the number of free parameters in a size n

tensor with rank r. In addition to the observed entries, the
mode-1 feature matrix is constructed by extracting the top-
(r1 + 10) singular vectors from a matrix of size n1 × 10r1

whose columns are sampled from the mode-1 fibers of the
hyperspectral graphs. The recovery accuracy is measured by

Normalized Root mean Square Error (NRSE) [Kressner et
al., 2014]. All the compared methods are terminated when
the training NRSE is less than 0.003 or iterate more than
300 epochs. We report the NRSE and CPU time of the com-
pared methods in Tab. 2. From the table, we can see that the
proposed method has much higher accuracy than the other
solvers in our baseline. The empirical results also indicate
that the sparser the observed pixels are the higher CGSI’s im-
provement is on the recovery accuracy. The visual results of
the 27th slices of recovered hyperspectral images of scene 7
are illustrated in Fig. 2.

5.2 Recommender System
In recommendation tasks, two datasets are considered:
MovieLens 10M (ML10M) and MovieLens 20M (ML20M).
Both datasets contain the rating history of users for items at
specific moments. For both datasets, we partition the samples
into 731 slices in terms of time stamp. Those slices have the
identical time intervals. Accordingly, the completion tasks
for the two datasets are of sizes 71567 × 10681 × 731 and
138493× 26744× 731 respectively. In addition to the rating
history, both datasets contain two extra files: one describes
the genres of each movie, and the other contains tags of each
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Table 3: Performance of the compared methods on Recommendation Tasks.

AltMin FTC GeomCG gHOI TFAI CGSI
dataset rank RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

ML10M

(4,4,4) 0.982 924 0.824 236 0.835 307 1.076 467 1.011 426 0.823 178
(6,6,6) 0.968 1830 0.814 535 0.826 679 1.262 1035 0.9948 942 0.814 434
(8,8,8) 1.010 3123 0.822 928 0.833 1135 1.062 1734 0.993 1617 0.810 754

(10,10,10) 1.147 4963 0.824 1631 0.843 2220 1.094 2788 0.992 2522 0.807 1067

ML20M

(4,4,4) 1.061 690 0.822 466 0.829 601 1.050 918 1.029 797 0.818 363
(6,6,6) 1.089 3451 0.808 982 0.822 1309 1.057 1869 1.008 1644 0.805 1107
(8,8,8) 1.092 5890 0.812 1725 0.828 2271 1.045 3363 1.004 3144 0.804 1739

(10,10,10) 1.092 9418 0.818 3161 0.834 4308 1.054 5795 1.025 5394 0.799 2813
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Figure 3: Accuracy of compared methods under different size of training set

movie. We construct a corpus that contains the text descrip-
tion of all movies from the genres descriptions and all the
tags. The feature matrix is extracted from the above corpus by
the latent semantic analysis (LSA) method. The processing is
efficient since LSA is implemented via randomized SVD.

Various empirical studies are conducted to validate the
performance of the proposed method. In the first scenario,
we record the CPU time and the Root Mean Square Error
(RMSE) outputted by the compared algorithms under differ-
ent choices of multi-linear rank. In this scenario, for both
datasets, 80% samples are chosen as training set, and the rest
are left for testing. The results are listed in Tab. 3, which sug-
gests that the proposed method outperforms all other solvers
in terms of accuracy. For ML10M, our method uses signifi-
cantly less CPU time than its competitors. In Fig. 3, we report
another scenario, in which the percentage of training samples
are varied from 10% to 70% and the rank parameter is fixed to
(10, 10, 10). Experimental results in this figure indicate that
our method has the lowest RMSE.

To show the impact of parameter α on the performance
of our method, we depict the relation between RMSE and
α in Fig. 4, where the rank parameter is set to (10, 10, 10),
and percentage of training samples is set to 80%. From this
Figure we can see that our method has higher accuracy than
the vanilla Riemannian model’s solver FTC for a wide range
of parameter choices.

6 Conclusion
In this paper, we exploit the side information to improve the
accuracy of Riemannian tensor completion. A novel Rieman-
nian model is proposed. To solve the model efficiently, we
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Figure 4: Effect of parameter α on the accuracy of CGSI.

design a new Riemannian metric that implicitly induce an
adaptive preconditioner for the solving procedure. Then, we
devise a Riemannian conjugate gradient descent method us-
ing the well-tuned metric. Empirical results show that our
solver outperforms the state-of-the-art.
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