Skip to main content

An Approximation Algorithm for the H-Prize-Collecting Power Cover Problem

  • Conference paper
  • First Online:
Frontiers of Algorithmic Wisdom (IJTCS-FAW 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13461))

Included in the following conference series:

Abstract

We are given a set U of user points, a set \(\mathcal{S}\) of sensors in a d-dimensional space \(\mathbb {R}^d\) and a lower bound H. Each user point \(u\in U\) has a profit h(u) and a penalty cost \(\pi (u)\). Each sensor \(s\in \mathcal{S}\) can adjust its power, and the cover range of sensors with power p(s) is a d-dimensional ball of radius r(s), where \(p(s)= r(s)^{\alpha }\) and \(\alpha \ge 1\) is a constant. The goal of the H-prize-collecting power cover problem is to determine a power assignment such that the total profit of covered user points is at least H and the total power of sensors plus the total penalty cost of uncovered user points is minimized. First, we proved that this problem is NP-hard even when \(\alpha =1\), and \(d=1\) and \(\pi (u)=0\) for any \(u\in U\). Then, by utilizing primal-dual and Lagrangian relaxation techniques, we present a \((4\cdot 3^{\alpha -1}+ \epsilon )\)-approximation algorithm for any desired accuracy \(\epsilon >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biló, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) Algorithms - ESA 2005, LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005) https://doi.org/10.1007/11561071_42

  2. Dai, H., Deng, B., Li, W., Liu, X.: A note on the minimum power partial cover problem on the plane. J. Combinat. Optim. 44(2), 1–9 (2022). https://doi.org/10.1007/s10878-022-00869-8

  3. Freund, A., Rawitz, D.: Combinatorial Interpretations of Dual Fitting and Primal Fitting. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 137–150. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6_11

    Chapter  MATH  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman and Company, New York (1990)

    MATH  Google Scholar 

  5. Guo, J., Liu, W., Hou, B.: An approximation algorithm for P-prize-collecting set cover problem. J. Operat. Res. Soc. China (2021). https://doi.org/10.1007/s40305-021-00364-7

  6. K\(\ddot{o}\)nemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems. Algorithmica 59(4), 489–509 (2011)

    Google Scholar 

  7. Li, M., Ran, Y., Zhang, Z.: A primal-dual algorithm for the minimum power partial cover problem. J. Combinat. Optim. 39, 725–746 (2020)

    Google Scholar 

  8. Liang, W., Li, M., Zhang, Z., Huang, X.: Minimum power partial multi-cover on a line. Theoret. Comput. Sci. 864, 118–128 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, X., Dai, H., Li, S., Li, W.: The \(k\)-prize-collecting minimum power cover problem with submodular penalties on a plane . Sci. Sin. Inform. 52, 947–959 (2022). (in Chinese). https://doi.org/10.1360/SSI-2021-0445

  10. Liu, X., Li, W.: Approximation algorithms for the multiprocessor scheduling with submodular penalties. Optim. Lett. 15(6), 2165–2180 (2021). https://doi.org/10.1007/s11590-021-01724-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, X., Li, W.: Combinatorial approximation algorithms for the submodular multicut problem in trees with submodular penalties. J. Combinat. Optim. 44,1964–1976 (2020). https://doi.org/10.1007/s10878-020-00568-2

  12. Liu, X., Li, W., Dai, H.: Approximation algorithms for the minimum power cover problem with submodular/linear penalties. Theor. Comput. Sci. 923, 256–270 (2022). https://doi.org/10.1016/j.tcs.2022.05.012 (2022)

  13. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum power cover problem. Optim. Lett. 16, 2373–2385 (2021). https://doi.org/10.1007/s11590-021-01831-z

  14. Liu, X., Li, W., Yang, J.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum vertex cover problem with submodular penalties. Front. Comput. Sci. 17 (2022). https://doi.org/10.1007/s11704-022-1665-9

  15. Liu, X., Li, W., Zhu, Y.: Single machine vector scheduling with general penalties. Mathematics 9, 1965 (2021)

    Article  Google Scholar 

  16. Ran, Y., Huang, X., Zhang, Z., Du, D.-Z.: Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks. J. Global Optim. 80(3), 661–677 (2021). https://doi.org/10.1007/s10898-021-01033-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The work is supported in part by the National Natural Science Foundation of China [No. 12071417].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, H., Li, W., Liu, X. (2022). An Approximation Algorithm for the H-Prize-Collecting Power Cover Problem. In: Li, M., Sun, X. (eds) Frontiers of Algorithmic Wisdom. IJTCS-FAW 2022. Lecture Notes in Computer Science, vol 13461. Springer, Cham. https://doi.org/10.1007/978-3-031-20796-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20796-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20795-2

  • Online ISBN: 978-3-031-20796-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics