Skip to main content
Log in

Approximation algorithms for the multiprocessor scheduling with submodular penalties

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we consider multiprocessor scheduling with submodular penalties to extend multiprocessor scheduling with rejection to submodular function. An instance of the problem is given by n jobs and m machines with each job having a certain processing time on a machine. We aim to find a subset R of rejected jobs, and assign each of other jobs to one of the m machines. The objective is to minimize the sum of the makespan of the m machines and the rejection penalty R, where the rejection penalty is determined by a submodular function. For this problem, we design a non-combinatorial Lovász rounding algorithm that achieves a worst-case guarantee of \(\frac{3+\sqrt{5}}{2}\). Then, we consider a special case of this problem in which all the machines are identical, i.e. each job has the same processing time on any machine, and we design a combinatorial \((2-\frac{1}{m})\)-approximation algorithm based on the greedy method and list scheduling (LS) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998)

    Article  MathSciNet  Google Scholar 

  2. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp: 671–680. ACM (2014)

  3. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. SIAM J. Discrete Math. 13(1), 64–78 (2000)

    Article  MathSciNet  Google Scholar 

  4. Du, D., Lu, R., Xu, D.: A primal-dual approximation algorithm for the facility location problem with submodular penalties. Algorithmica 63(1–2), 191–200 (2012)

    Article  MathSciNet  Google Scholar 

  5. Fleischer, L., Iwata, S.: A push-relabel framework for submodular function minimization and applications to parametric optimization. Discrete Appl. Math. 131(2), 311–322 (2003)

    Article  MathSciNet  Google Scholar 

  6. Fujishige, S.: Submodular Functions And Optimization, vol. 47. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  7. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)

    Article  Google Scholar 

  8. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)

    Article  MathSciNet  Google Scholar 

  9. Guan, L., Li, W., Xiao, M.: Online algorithms for the mixed ring loading problem with two nodes. Optim. Lett. (2020). https://doi.org/10.1007/s11590-020-01632-w

    Article  Google Scholar 

  10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM (JACM) 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  11. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of integral variables. SIAM J. Discrete Math. 24(2), 457–485 (2010)

    Article  MathSciNet  Google Scholar 

  12. Jansen K., Klein K.M., Verschae J. Closing the gap for makespan scheduling via sparsification techniques (2016). arXiv preprint arXiv:1604.07153

  13. Kones, I., Levin, A.: A unified framework for designing EPTAS for load balancing on parallel machines. Algorithmica 81(7), 3025–3046 (2019)

    Article  MathSciNet  Google Scholar 

  14. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46(1–3), 259–271 (1990)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Li, J., Guan, L.: Approximation algorithms for the ring loading problem with penalty cost. Inf. Process. Lett. 114(1–2), 56–59 (2014)

    Article  MathSciNet  Google Scholar 

  16. Li, W., Li, J., Zhang, X., Chen, Z.: Penalty cost constrained identical parallel machine scheduling problem. Theor. Comput. Sci. 607, 181–192 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility location problems with linear/submodular penalties. Algorithmica 73(2), 460–482 (2015)

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Li, W.: Combinatorial approximation algorithms for the submodular multicut problem in trees with submodular penalties. J. Comb. Optim. 2020(4), 1–13 (2020)

    Google Scholar 

  19. Liu, X., Li, W.: Approximation algorithm for the single machine scheduling problem with release dates and submodular rejection penalty. Mathematics 8, 133 (2020)

    Article  Google Scholar 

  20. Liu, X., Xing, P., Li, W.: Approximation algorithms for the submodular load balancing with submodular penalties. Mathematics 8, 1785 (2020)

    Article  Google Scholar 

  21. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming The State of the Art, PP: 235–257. Springer, Berlin (1983)

    Google Scholar 

  22. Mirzasoleiman B., Jegelka, S., Krause, A. Streaming non-monotone submodular maximization: personalized video summarization on the fly. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) , pp. 1379–1386. AAAI (2018)

  23. Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling with rejection. Eur. J. Oper. Res. 241(3), 653–661 (2015)

    Article  MathSciNet  Google Scholar 

  24. Potts, C.N.: Analysis of a linear programming heuristic of scheduling unrelated parallel-machines. Discrete Appl. Math. 10, 155–164 (1985)

    Article  MathSciNet  Google Scholar 

  25. Sharma Y., Swamy C., Williamson D.P. Approximation algorithms for prize collecting forest problems with submodular penalty functions. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1275–1284. SIAM (2007)

  26. Wei K., Iyer R.K., Wang S., Bai W., Bilmes J.A. Mixed robust/average submodular partitioning: Fast algorithms, guarantees, and applications. In: Proceedings of Advances in Neural Information Processing Systems, pp. 2233–2241. MIT (2015)

  27. Zhang, X., Xu, D., Du, D., Wu, C.: Approximation algorithms for precedence-constrained identical machine scheduling with rejection. J. Comb. Optim. 35(1), 318–330 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zhong, X., Ou, J.: Improved approximation algorithms for parallel machine scheduling with release dates and job rejection. Q. J. Oper. Res. (4OR) 15, 387–406 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Program for Excellent Young Talents of Yunnan University, Training Program of National Science Fund for Distinguished Young Scholars, IRTSTYN, and Key Joint Project of the Science and Technology Department of Yunnan Province and Yunnan University [No. 2018FY001(-014)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, W. Approximation algorithms for the multiprocessor scheduling with submodular penalties. Optim Lett 15, 2165–2180 (2021). https://doi.org/10.1007/s11590-021-01724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01724-1

Keywords

Navigation