Abstract
In this paper, we introduce the k-prize-collecting minimum power cover problem (k-PCPC). In this problem, we are given a point set V, a sensor set S on a plane and a parameter k with \(k\le |V|\). Each sensor can adjust its power and the covering range of sensor s with power p(D(s, r(s))) is a disk D(s, r(s)), where r(s) is the radius of disk D(s, r(s)) and \(p(D(s,r(s)))=c\cdot r(s)^{\alpha }\). The k-PCPC determines a disk set \(\mathcal {F}\) such that at least k points are covered, where the center of any disk in \(\mathcal {F}\) is a sensor. The objective is to minimize the total power of the disk set \(\mathcal {F}\) plus the penalty of R, where R is the set of points that are not covered by \(\mathcal {F}\). This problem generalizes the well-known minimum power cover problem, minimum power partial cover problem and prize collecting minimum power cover problem. Our main result is to present a novel two-phase primal-dual algorithm for the k-PCPC with an approximation ratio of at most \(3^{\alpha }\).
Similar content being viewed by others
References
Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: Proceedings of 22nd ACM Symposium on Computational Geometry, pp. 449–458. ACM (2006)
Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disk. Comput. Geom. 46(3), 394–399 (2013)
Bhowmick, S., Inamdar, T., Varadarajan, K.: On metric multi-covering problems. arXiv:org/abs/1602.04152 (2017)
Bhowmick, S., Varadarajan, K., Xue, S.: A constant-factor approximation for multi-covering with disks. J. Comput. Geom. 6(1), 220–234 (2015)
Biló, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Proceedings of 13th annual European symposium on algorithm, pp. 460–471. Springer (2005)
Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68(2), 417–441 (2004)
Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal fitting. In: Proceedings of approximation and online algorithms, pp. 137–150. Springer (2003)
Guan, L., Li, W., Xiao, M.: Online algorithms for the mixed ring loading problem with two nodes. Optim. Lett. 15, 1229–1239 (2021)
Han, L., Xu, D., Du, D., Wu, C.: A 5-approximation algorithm for the \(k\)-prize-collecting Steiner tree problem. Optim. Lett. 13, 573–585 (2017)
Hou, X., Liu, W., Hou, B.: An approximation algorithm for the \(k\)-prize-collecting multicut on a tree problem. Theor. Comput. Sci. 844, 26–33 (2020)
Huang, Z., Feng, Q., Wang, J., Xu, J.: PTAS for minimum cost multi-covering with disks. In: Proceedings of the 2021 ACM-SIAM symposium on discrete algorithms, pp. 840–859. SIAM (2021)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)
Li, M., Ran, Y., Zhang, Z.: A primal-dual algorithm for the minimum power partial cover problem. J. Comb. Optim. 39(3), 1–22 (2020)
Li, M., Yang, Z., Liu, Y.: Sea depth measurement with restricted floating sensors. ACM Trans. Embed. Comput. Syst. 13(1), 1–21 (2013)
Matsuda, Y., Takahashi, S.: A 4-approximation algorithm for \(k\)-prize collecting Steiner tree problems. Optim. Lett. 13(2), 341–348 (2019)
Pedrosa, L.L.C., Rosado, H.H.K.: A 2-approximation for the \(k\)-prize-collecting Steiner tree problem. arXiv:1911.09221 (2019)
Ran, Y., Huang, X., Zhang, Z., Du, D.: Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks. J. Glob. Optim. 80, 661–677 (2021)
Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multicover. J. Comb. Optim. 34, 302–313 (2017)
Ran, Y., Shi, Y., Tang, C., Zhang, Z.: A primal-dual algorithm for the minimum partial set multi-cover problem. J. Comb. Optim. 39, 725–746 (2020)
Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33, 791–802 (2017)
Ran, Y., Zhang, Z., Tang, S., Du, D.: Breaking the \(r_{max}\) Barrier: enhanced approximation algorithms for partial set multicover problem. INFORMS J. Comput. 33(2), 774–784 (2021)
Shi, Y., Ran, Y., Zhang, Z., Du, D.: A bicriteria algorithm for the minimum submodular cost partial set multi-cover problem. Theor. Comput. Sci. 803, 1–9 (2020)
Shi, Y., Ran, Y., Zhang, Z., Willson, J., Tong, G., Du, D.: Approximation algorithm for the partial set multi-cover problem. J. Glob. Optim. 75, 1133–1146 (2019)
Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)
Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
Xing, G., Lu, C., Zhang, Y., Huang, Q., Pless R.: Minimum power configuration in wireless sensor networks. In: Proceedings of the 6th ACM interational symposium on mobile ad hoc networking and computing, pp. 390–401. ACM (2005)
Acknowledgements
The work is supported in part by the National Natural Science Foundation of China [No. 12071417], Program for Excellent Young Talents of Yunnan University, Training Program of National Science Fund for Distinguished Young Scholars, and IRTSTYN.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, X., Li, W. & Xie, R. A primal-dual approximation algorithm for the k-prize-collecting minimum power cover problem. Optim Lett 16, 2373–2385 (2022). https://doi.org/10.1007/s11590-021-01831-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-021-01831-z