The MEMORY
storage engine (formerly known as
HEAP
) creates special-purpose tables with
contents that are stored in memory. Because the data is vulnerable
to crashes, hardware issues, or power outages, only use these tables
as temporary work areas or read-only caches for data pulled from
other tables.
Table 18.4 MEMORY Storage Engine Features
Feature | Support |
---|---|
B-tree indexes | Yes |
Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) | Yes |
Cluster database support | No |
Clustered indexes | No |
Compressed data | No |
Data caches | N/A |
Encrypted data | Yes (Implemented in the server via encryption functions.) |
Foreign key support | No |
Full-text search indexes | No |
Geospatial data type support | No |
Geospatial indexing support | No |
Hash indexes | Yes |
Index caches | N/A |
Locking granularity | Table |
MVCC | No |
Replication support (Implemented in the server, rather than in the storage engine.) | Limited (See the discussion later in this section.) |
Storage limits | RAM |
T-tree indexes | No |
Transactions | No |
Update statistics for data dictionary | Yes |
Developers looking to deploy applications that use the
MEMORY
storage engine for important, highly
available, or frequently updated data should consider whether NDB
Cluster is a better choice. A typical use case for the
MEMORY
engine involves these characteristics:
Operations involving transient, non-critical data such as session management or caching. When the MySQL server halts or restarts, the data in
MEMORY
tables is lost.In-memory storage for fast access and low latency. Data volume can fit entirely in memory without causing the operating system to swap out virtual memory pages.
A read-only or read-mostly data access pattern (limited updates).
NDB Cluster offers the same features as the
MEMORY
engine with higher performance levels,
and provides additional features not available with
MEMORY
:
Row-level locking and multiple-thread operation for low contention between clients.
Scalability even with statement mixes that include writes.
Optional disk-backed operation for data durability.
Shared-nothing architecture and multiple-host operation with no single point of failure, enabling 99.999% availability.
Automatic data distribution across nodes; application developers need not craft custom sharding or partitioning solutions.
Support for variable-length data types (including
BLOB
andTEXT
) not supported byMEMORY
.
MEMORY
performance is constrained by contention
resulting from single-thread execution and table lock overhead
when processing updates. This limits scalability when load
increases, particularly for statement mixes that include writes.
Despite the in-memory processing for MEMORY
tables, they are not necessarily faster than
InnoDB
tables on a busy server, for
general-purpose queries, or under a read/write workload. In
particular, the table locking involved with performing updates can
slow down concurrent usage of MEMORY
tables
from multiple sessions.
Depending on the kinds of queries performed on a
MEMORY
table, you might create indexes as
either the default hash data structure (for looking up single
values based on a unique key), or a general-purpose B-tree data
structure (for all kinds of queries involving equality,
inequality, or range operators such as less than or greater than).
The following sections illustrate the syntax for creating both
kinds of indexes. A common performance issue is using the default
hash indexes in workloads where B-tree indexes are more efficient.
The MEMORY
storage engine does not create any
files on disk. The table definition is stored in the MySQL data
dictionary.
MEMORY
tables have the following
characteristics:
Space for
MEMORY
tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put in a linked list and are reused when you insert new data into the table.MEMORY
tables also have none of the problems commonly associated with deletes plus inserts in hashed tables.MEMORY
tables use a fixed-length row-storage format. Variable-length types such asVARCHAR
are stored using a fixed length.MEMORY
includes support forAUTO_INCREMENT
columns.Non-
TEMPORARY
MEMORY
tables are shared among all clients, just like any other non-TEMPORARY
table.
To create a MEMORY
table, specify the clause
ENGINE=MEMORY
on the
CREATE TABLE
statement.
CREATE TABLE t (i INT) ENGINE = MEMORY;
As indicated by the engine name, MEMORY
tables
are stored in memory. They use hash indexes by default, which
makes them very fast for single-value lookups, and very useful for
creating temporary tables. However, when the server shuts down,
all rows stored in MEMORY
tables are lost. The
tables themselves continue to exist because their definitions are
stored in the MySQL data dictionary, but they are empty when the
server restarts.
This example shows how you might create, use, and remove a
MEMORY
table:
mysql> CREATE TABLE test ENGINE=MEMORY
SELECT ip,SUM(downloads) AS down
FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;
The maximum size of MEMORY
tables is limited by
the max_heap_table_size
system
variable, which has a default value of 16MB. To enforce different
size limits for MEMORY
tables, change the value
of this variable. The value in effect for
CREATE TABLE
, or a subsequent
ALTER TABLE
or
TRUNCATE TABLE
, is the value used
for the life of the table. A server restart also sets the maximum
size of existing MEMORY
tables to the global
max_heap_table_size
value. You
can set the size for individual tables as described later in this
section.
The MEMORY
storage engine supports both
HASH
and BTREE
indexes. You
can specify one or the other for a given index by adding a
USING
clause as shown here:
CREATE TABLE lookup
(id INT, INDEX USING HASH (id))
ENGINE = MEMORY;
CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;
For general characteristics of B-tree and hash indexes, see Section 10.3.1, “How MySQL Uses Indexes”.
MEMORY
tables can have up to 64 indexes per
table, 16 columns per index and a maximum key length of 3072
bytes.
If a MEMORY
table hash index has a high degree
of key duplication (many index entries containing the same value),
updates to the table that affect key values and all deletes are
significantly slower. The degree of this slowdown is proportional
to the degree of duplication (or, inversely proportional to the
index cardinality). You can use a BTREE
index
to avoid this problem.
MEMORY
tables can have nonunique keys. (This is
an uncommon feature for implementations of hash indexes.)
Columns that are indexed can contain NULL
values.
MEMORY
table contents are stored in memory,
which is a property that MEMORY
tables share
with internal temporary tables that the server creates on the fly
while processing queries. However, the two types of tables differ
in that MEMORY
tables are not subject to
storage conversion, whereas internal temporary tables are:
If an internal temporary table becomes too large, the server automatically converts it to on-disk storage, as described in Section 10.4.4, “Internal Temporary Table Use in MySQL”.
User-created
MEMORY
tables are never converted to disk tables.
To populate a MEMORY
table when the MySQL
server starts, you can use the
init_file
system variable. For
example, you can put statements such as
INSERT INTO ...
SELECT
or LOAD DATA
into
a file to load the table from a persistent data source, and use
init_file
to name the file. See
Section 7.1.8, “Server System Variables”, and
Section 15.2.9, “LOAD DATA Statement”.
When a replication source server shuts down and restarts, its
MEMORY
tables become empty. To
replicate this effect to replicas, the first time that the source
uses a given MEMORY
table after
startup, it logs an event that notifies replicas that the table
must be emptied by writing a DELETE
or (from MySQL 8.0.22) TRUNCATE
TABLE
statement for that table to the binary log. When a
replica server shuts down and restarts, its
MEMORY
tables also become empty, and
it writes a DELETE
or (from MySQL
8.0.22) TRUNCATE TABLE
statement to
its own binary log, which is passed on to any downstream replicas.
When you use MEMORY
tables in a
replication topology, in some situations, the table on the source
and the table on the replica can differ. For information on
handling each of these situations to prevent stale reads or
errors, see Section 19.5.1.21, “Replication and MEMORY Tables”.
The server needs sufficient memory to maintain all
MEMORY
tables that are in use at the same time.
Memory is not reclaimed if you delete individual rows from a
MEMORY
table. Memory is reclaimed only when the
entire table is deleted. Memory that was previously used for
deleted rows is re-used for new rows within the same table. To
free all the memory used by a MEMORY
table when
you no longer require its contents, execute
DELETE
or
TRUNCATE TABLE
to remove all rows,
or remove the table altogether using DROP
TABLE
. To free up the memory used by deleted rows, use
ALTER TABLE ENGINE=MEMORY
to force a table
rebuild.
The memory needed for one row in a MEMORY
table
is calculated using the following expression:
SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))
ALIGN()
represents a round-up factor to cause
the row length to be an exact multiple of the
char
pointer size.
sizeof(char*)
is 4 on 32-bit machines and 8 on
64-bit machines.
As mentioned earlier, the
max_heap_table_size
system
variable sets the limit on the maximum size of
MEMORY
tables. To control the maximum size for
individual tables, set the session value of this variable before
creating each table. (Do not change the global
max_heap_table_size
value unless
you intend the value to be used for MEMORY
tables created by all clients.) The following example creates two
MEMORY
tables, with a maximum size of 1MB and
2MB, respectively:
mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)
mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)
Both tables revert to the server's global
max_heap_table_size
value if the
server restarts.
You can also specify a MAX_ROWS
table option in
CREATE TABLE
statements for
MEMORY
tables to provide a hint about the
number of rows you plan to store in them. This does not enable the
table to grow beyond the
max_heap_table_size
value, which
still acts as a constraint on maximum table size. For maximum
flexibility in being able to use MAX_ROWS
, set
max_heap_table_size
at least as
high as the value to which you want each MEMORY
table to be able to grow.
A forum dedicated to the MEMORY
storage engine
is available at https://forums.mysql.com/list.php?92.