Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

閉める
閉める
  • Netskopeが選ばれる理由 シェブロン

    ネットワークとセキュリティの連携方法を変える。

  • 導入企業 シェブロン

    Netskopeは、フォーチュン100社の30社以上を含む、世界中で3,400社以上の顧客にサービスを提供しています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。

ネットスコープが2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご覧ください。

レポートを読む
顧客ビジョナリースポットライト

革新的な顧客が Netskope One プラットフォームを通じて、今日の変化するネットワークとセキュリティの状況をどのようにうまく乗り越えているかをご覧ください。

電子書籍を入手する
顧客ビジョナリースポットライト
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Aerial view of a city
  • Security Service Edge(SSE) シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope One SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
ダミーのためのSASEアーキテクチャ

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
ダミーのためのSASEアーキテクチャ eBook
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュアアクセスサービスエッジ(SASE)を通じてセキュリティとネットワーキングの変革を実現する方法をご覧ください

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

2025年の予測
今回の Security Visionaries では、Wondros の社長であり、Cybersecurity and Infrastructure Security Agency (CISA) の元首席補佐官である Kiersten Todt 氏が、2025 年以降の予測について語ります。

ポッドキャストを再生する Browse all podcasts
2025年の予測
最新のブログ

Netskopeがセキュアアクセスサービスエッジ(SASE)機能を通じてゼロトラストとSASEの旅をどのように実現できるかをお読みください。

ブログを読む
日の出と曇り空
SASE Week 2024 オンデマンド

SASEとゼロトラストの最新の進歩をナビゲートする方法を学び、これらのフレームワークがサイバーセキュリティとインフラストラクチャの課題に対処するためにどのように適応しているかを探ります

セッションの詳細
SASE Week 2024
SASEとは

クラウド優位の今日のビジネスモデルにおいて、ネットワークとセキュリティツールの今後の融合について学びます。

SASEについて学ぶ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • 採用情報 シェブロン

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • カスタマーソリューション シェブロン

    お客様の成功のために、Netskopeはあらゆるステップを支援いたします。

  • トレーニングと認定 シェブロン

    Netskopeのトレーニングで、クラウドセキュリティのスキルを学ぶ

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
クラウドセキュリティの未来を形作る

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

チームに参加する
Netskopeで働く
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

カスタマーソリューションに移動
Netskopeプロフェッショナルサービス
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ

Hive Ransomware: Actively Targeting Hospitals

Sep 10 2021

Summary

Most ransomware groups operating in the RaaS (Ransomware-as-a-Service) model have an internal code of ethics that includes avoiding breaching some specific sectors, such as hospitals or critical infrastructure, thus avoiding great harm to society and consequently drawing less attention from law enforcement. For example, the BlackMatter ransomware states they are not willing to attack hospitals, critical infrastructure, defense industry, non-profit companies, and oil and gas industry targets, having learned from the mistakes of other groups, such as DarkSide, who shut down its operations after the Colonial Pipeline attack.

However, this code of ethics is not always adopted by attackers, as is the case with Hive, a new family of ransomware discovered in June 2021. On August 15, 2021, Hive ransomware was responsible for an attack against the Memorial Health System, a non-profit integrated health system with three hospitals in Ohio and West Virginia (Marietta Memorial Hospital, Selby General Hospital, and Sistersville General Hospital), causing radiology exams and surgical cases to be canceled. According to the FBI, the group uses phishing emails with malicious attachments to gain access into networks, allowing the attackers to move laterally over the network to steal data and infect more machines.

HiveLeaks

In addition to encrypting files, Hive also steals sensitive data from networks, threatening to publish everything in their HiveLeak website, hosted on the deep web, which is a common practice among ransomware working in this double extortion scheme.

There are two websites maintained by the group, the first one is protected by username and password, accessible only by the victims who obtain the credentials in the ransom note.

Figure 01. Hive ransomware private website

Once authenticated, the victim can see:

  1. The name of the infected organization;
  2. A live chat, where the victim can interact with the attackers;
  3. A file upload system, where the victim can send files to the attackers;
  4. A link to Hive’s decryption software, if the ransom is paid by the victims.
Figure 02. Victim’s private website by Hive ransomware

The second website, “HiveLeaks,” is where the attackers publish data about their targets and is publicly accessible.

Figure 03. “HiveLeaks” logo.

For each target, you can see the name, a small description, the website, the revenue, and the number of employees at the company. Also, you can see two dates, when the files were encrypted and when the attack was made public. Curiously enough, there are also two social media buttons where you can share this information.

Figure 04. Information about the infected company on the “HiveLeaks” website.

If any data is published by the attackers, you will also find a link where the files can be downloaded. Hive uses common file-sharing services for this purpose, such as PrivatLab, AnonFiles, MEGA, UFile, SendSpace, and Exploit.in, as shown in Figure 05.

Figure 05. Links to download stolen data by Hive.

Memorial Health System Attack

The Hive ransomware infected the Memorial Health System (MHS) on August 15, 2021. The attackers claim to have stolen patient data including names, social security numbers, dates of birth, addresses and phone numbers, and medical histories for 200,000 patients, and an additional 1.2 TB of other data.

MHS tried to appeal to the attackers to provide the decrypter for free but ultimately ended up paying 1.8M, divided equally into two Bitcoin wallets. The attackers moved the Bitcoins to another wallet just a few minutes after the transaction was made by MHS.

Aside from the decryptor, the attackers also promise a security report, a file tree describing all stolen data, and the logs proving that they had erased everything from their servers.

Analysis

The ransomware was written in Go, an open-source programming language that allows cross-compilation, meaning that the same source code can be compiled to different OS, such as Linux, Windows, and macOS.

Although we have only seen Windows versions in the wild at this point, we have strong indications that the group is able to infect other systems such as Linux, as well as the Hypervisor ESXi, as we will demonstrate later in the analysis.

We have analyzed two different samples, being 32 and 64-bit Windows versions of the malware. Both of them are packed with UPX, which is an open-source executable packer.

Figure 06. Main Hive ransomware payload, packed with UPX.

The first thing we noticed is that both samples we analyzed had a command line interface (CLI), accepting parameters and also showing log messages throughout the malware execution.

The 64-bit sample accepts two parameters:

  • kill: Kill processes specified as value (case insensitive regex)
  • stop: Stop services specified as value (case insensitive regex)
Figure 07. Parameters accepted by the 64-bit sample of Hive.

On the other hand, the 32-bit sample offers three more options:

  • kill: Kill processes specified as value (case insensitive regex)
  • no-clean: Do not clean disk space (described later in this analysis)
  • skip: Files that the attacker doesn’t want to encrypt (case insensitive regex)
  • skip-before: Skips files created before the specified date.

stop: Stop services specified as value (case insensitive regex)

Figure 08. Parameters accepted by the 32-bit sample of Hive.

Aside from the parameters above, the attacker can also specify the path containing the files that need to be encrypted. If this path isn’t specified, the ransomware will list all the files in the machine, skipping the ones specified in the “-skip” and “-skip-before” parameters.

For analysis purposes, we have created a folder named “C:\to_encrypt”, containing three different pictures. Once executed, the ransomware starts printing out log messages throughout the whole encryption process.

Figure 09. 32-bit Hive ransomware execution.

The log messages show pretty much everything the malware is doing, however, let’s take a look at each one of the aspects being printed out.

Analyzing this 32-bit sample closely, we can see some of the function names parsed by the disassembler, from a package the attackers named as “google.com”, perhaps as an attempt to deceive the analyst.

Figure 10. 32-bit Hive function names.

First, the malware calls a function encryptor.NewApp().

Figure 11. “NewApp” Hive function.

Simply put, this function initializes some important data used by the ransomware, such as the primary key.

Figure 12. “NewApp” function flow.

The function keys.NewPrimaryKey() generates a 10 MB random key used in the encryption process.

Figure 13. 10 MB key generated by Hive.

Once the key is generated, the ransom note and a batch script are loaded into memory, which will be eventually saved to the disk during the process.

After this setup is completed, the ransomware calls a function named App.Run(), which starts the flow we saw in the log messages.

Figure 14. Hive “Run” function.

The first function called inside App.Run() is App.ExportKey().

Figure 15. “ExportKey” function.

This function is responsible for encrypting the 10 MB key generated by keys.NewPrimaryKey().

Figure 16. Main flow of “ExportKey” function.

Hive contains 100 public RSA keys embedded in the binary, which are used to encrypt the key generated previously. They are all parsed through the function ParsePKCS1PublicKey from the pkcs1.go library.

Figure 17. Hive ransomware loading public RSA keys.

The malware then encrypts the data using the EncryptOAEP function from the rsa.go library.

Figure 18. Hive encrypting the key using RSA.

The encrypted key is then saved into a file that ends with “.key.hive” extension (or “key.<random>” for the 64-bit version). This is the file that is eventually loaded by the decryptor to retrieve the encryption key used in the process.

Figure 19. Key file saved by Hive during the process.

After creating the encrypted key, the malware calls two functions named App.KillProcesses() and App.StopServices().


Figure 20. Hive functions to kill processes and stop services.

The name of these functions are self-explanatory, and the full list of default values for stopped processes and services can be found in our GitHub repository.

Next, Hive executes the functions App.RemoveItself() and App.RemoveShadowCopies().

Figure 21. Next two functions executed by the “Run”.

The first one is responsible for creating a batch script that was loaded into memory by the function encryptor.NewApp(). The purpose of this script is to delete the ransomware payload once this process is done.

Figure 27. Batch script created by Hive to delete the payload from disk
Figure 22. Batch script created by Hive to delete the payload from disk

The second function creates another batch script in disk that is responsible for deleting Windows Shadow Copies, to prevent any file restoration.

Figure 23. “shadow.bat” script created by the 32-bit Hive.

Here, we have a big difference between the two samples we have analyzed. Instead of creating a batch script, the 64-bit version we found uses several commands to delete not only the Windows Shadow Copies, but also to stop services, including Windows Defender.

Figure 24. Commands executed by the 64-bit Hive sample we analyzed.

The full list of commands executed by the 64-bit version can be found in our GitHub repository.

Next in the flow, we have two important functions:

Figure 30. “ScanFiles” and “EncryptFiles” functions of Hive.

App.ScanFiles() is responsible for fetching all the files that will be encrypted by the ransomware. Also, this function creates the ransom note in disk, which was already loaded in memory previously.

App.EncryptFiles() does exactly what the name describes. Within that function, the code is calling another two, respectively encryptFilesGroup() and EncryptFile(), loading the contents of the targeted file in memory, encrypting the data with what seems to be a custom algorithm created by Hive developers. Then, the encrypted file is written into disk, using the extension “.hive”.

Figure 26. Files encrypted by Hive ransomware.

Following the file encryption, we have another two functions executed by App.Run().

Figure 27. “EraseKey” and “Notify” functions.

The function App.EraseKey() accesses the memory location where the 10 MB primary key was stored by Hive and replaces all its bytes with random data.

Figure 28. Before and after the “EraseKey” function

App.Notify() creates the ransom note in disk, which is redundant since this file is also created by the function App.ScanFiles().

Last but not least, we have a curious function executed by the ransomware if the flag “-no-clean” wasn’t specified, named App.CleanSpace().

Figure 29. “CleanSpace” function.

Simply put, if executed, this code creates several files with 1GB+ each until the disk is full. Then, these newly created files are deleted.

Figure 30. Files created by the “CleanSpace” function.

Since Hive deletes files that have been encrypted, this process is likely performed to overwrite any bytes on disk that could potentially be restored to their original state, creating new files to replace deleted ones.

Figure 31. Disk space while the “CleanSpace” function is being executed.

Different from other ransomware families, Hive doesn’t change the user background, the only message available to the victim is the ransom note.

Figure 32. Hive ransom note.

According to the note, if the user deletes the file that has the “.key” extension, the data will be undecryptable, which leads us to the next part of this blog.

Decryptor

Hive provides decryptors for ESXi, Linux, and Windows (32 / 64-bit).

Figure 33. Hive ransomware decryptors for MHS.

Although we only found Windows versions of Hive in the wild, this is a strong indication that they have payloads for other systems, aligning with the fact that the whole code was built in Go language, which is multi-platform.

When it comes to the decryption process, the file first loads the encrypted key from disk, which is why the ransom note states that you can’t delete this file.

Figure 34. Hive decryption process

Once the key is loaded and decrypted, Hive scans all directories searching for encrypted files, and then proceeds with the decryption process.

Conclusion

Hive is yet another ransomware group that is likely operating in the RaaS model. However, the process used to encrypt the files is quite unusual. 

Usually, the encryption process implemented by ransomware in the wild is to generate a unique symmetric key for each file, that is eventually encrypted and stored along with the encrypted data, so it can be recovered later. Instead, Hive creates a unique key that is eventually encrypted and written into disk, making the decryption process irreversible if this file is deleted by accident. Furthermore, this ransomware contains functionalities that make the execution slow, such as “wiping” the disk until it’s full to avoid file restoration.

Regardless of these points, we consider Hive a dangerous threat, as it’s already causing damage to people and organizations, combined with the fact that the threat is multi-platform.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Gen:Variant.Ransom.Hive.2
    • Trojan.GenericKD.37237769
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

SHA256

hive_x861e21c8e27a97de1796ca47a9613477cf7aec335a783469c5ca3a09d4f07db0ff
hive_x64321d0c4f1bbb44c53cd02186107a18b7a44c840a9a5f0a78bdac06868136b72c

A full list of IOCs is available in our Git repo.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Stay informed!

Subscribe for the latest from the Netskope Blog