LLVM 20.0.0git
WindowScheduler.cpp
Go to the documentation of this file.
1//======----------- WindowScheduler.cpp - window scheduler -------------======//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// An implementation of the Window Scheduling software pipelining algorithm.
10//
11// The fundamental concept of the window scheduling algorithm involves folding
12// the original MBB at a specific position, followed by list scheduling on the
13// folded MIs. The optimal scheduling result is then chosen from various folding
14// positions as the final scheduling outcome.
15//
16// The primary challenge in this algorithm lies in generating the folded MIs and
17// establishing their dependencies. We have innovatively employed a new MBB,
18// created by copying the original MBB three times, known as TripleMBB. This
19// TripleMBB enables the convenient implementation of MI folding and dependency
20// establishment. To facilitate the algorithm's implementation, we have also
21// devised data structures such as OriMIs, TriMIs, TriToOri, and OriToCycle.
22//
23// Another challenge in the algorithm is the scheduling of phis. Semantically,
24// it is difficult to place the phis in the window and perform list scheduling.
25// Therefore, we schedule these phis separately after each list scheduling.
26//
27// The provided implementation is designed for use before the Register Allocator
28// (RA). If the target requires implementation after RA, it is recommended to
29// reimplement analyseII(), schedulePhi(), and expand(). Additionally,
30// target-specific logic can be added in initialize(), preProcess(), and
31// postProcess().
32//
33// Lastly, it is worth mentioning that getSearchIndexes() is an important
34// function. We have experimented with more complex heuristics on downstream
35// target and achieved favorable results.
36//
37//===----------------------------------------------------------------------===//
39#include "llvm/ADT/Statistic.h"
46#include "llvm/Support/Debug.h"
48
49using namespace llvm;
50
51#define DEBUG_TYPE "pipeliner"
52
53namespace {
54STATISTIC(NumTryWindowSchedule,
55 "Number of loops that we attempt to use window scheduling");
56STATISTIC(NumTryWindowSearch,
57 "Number of times that we run list schedule in the window scheduling");
58STATISTIC(NumWindowSchedule,
59 "Number of loops that we successfully use window scheduling");
60STATISTIC(NumFailAnalyseII,
61 "Window scheduling abort due to the failure of the II analysis");
62
64 WindowSearchNum("window-search-num",
65 cl::desc("The number of searches per loop in the window "
66 "algorithm. 0 means no search number limit."),
68
69cl::opt<unsigned> WindowSearchRatio(
70 "window-search-ratio",
71 cl::desc("The ratio of searches per loop in the window algorithm. 100 "
72 "means search all positions in the loop, while 0 means not "
73 "performing any search."),
74 cl::Hidden, cl::init(40));
75
76cl::opt<unsigned> WindowIICoeff(
77 "window-ii-coeff",
79 "The coefficient used when initializing II in the window algorithm."),
81
82cl::opt<unsigned> WindowRegionLimit(
83 "window-region-limit",
85 "The lower limit of the scheduling region in the window algorithm."),
87
88cl::opt<unsigned> WindowDiffLimit(
89 "window-diff-limit",
90 cl::desc("The lower limit of the difference between best II and base II in "
91 "the window algorithm. If the difference is smaller than "
92 "this lower limit, window scheduling will not be performed."),
94} // namespace
95
96// WindowIILimit serves as an indicator of abnormal scheduling results and could
97// potentially be referenced by the derived target window scheduler.
99 WindowIILimit("window-ii-limit",
100 cl::desc("The upper limit of II in the window algorithm."),
101 cl::Hidden, cl::init(1000));
102
104 : Context(C), MF(C->MF), MBB(ML.getHeader()), Loop(ML),
105 Subtarget(&MF->getSubtarget()), TII(Subtarget->getInstrInfo()),
106 TRI(Subtarget->getRegisterInfo()), MRI(&MF->getRegInfo()) {
107 TripleDAG = std::unique_ptr<ScheduleDAGInstrs>(
108 createMachineScheduler(/*OnlyBuildGraph=*/true));
109}
110
112 if (!initialize()) {
113 LLVM_DEBUG(dbgs() << "The WindowScheduler failed to initialize!\n");
114 return false;
115 }
116 // The window algorithm is time-consuming, and its compilation time should be
117 // taken into consideration.
118 TimeTraceScope Scope("WindowSearch");
119 ++NumTryWindowSchedule;
120 // Performing the relevant processing before window scheduling.
121 preProcess();
122 // The main window scheduling begins.
123 std::unique_ptr<ScheduleDAGInstrs> SchedDAG(createMachineScheduler());
124 auto SearchIndexes = getSearchIndexes(WindowSearchNum, WindowSearchRatio);
125 for (unsigned Idx : SearchIndexes) {
126 OriToCycle.clear();
127 ++NumTryWindowSearch;
128 // The scheduling starts with non-phi instruction, so SchedPhiNum needs to
129 // be added to Idx.
130 unsigned Offset = Idx + SchedPhiNum;
132 SchedDAG->startBlock(MBB);
133 SchedDAG->enterRegion(MBB, Range.begin(), Range.end(), SchedInstrNum);
134 SchedDAG->schedule();
135 LLVM_DEBUG(SchedDAG->dump());
136 unsigned II = analyseII(*SchedDAG, Offset);
137 if (II == WindowIILimit) {
139 LLVM_DEBUG(dbgs() << "Can't find a valid II. Keep searching...\n");
140 ++NumFailAnalyseII;
141 continue;
142 }
146 LLVM_DEBUG(dbgs() << "Current window Offset is " << Offset << " and II is "
147 << II << ".\n");
148 }
149 // Performing the relevant processing after window scheduling.
150 postProcess();
151 // Check whether the scheduling result is valid.
152 if (!isScheduleValid()) {
153 LLVM_DEBUG(dbgs() << "Window scheduling is not needed!\n");
154 return false;
155 }
156 LLVM_DEBUG(dbgs() << "\nBest window offset is " << BestOffset
157 << " and Best II is " << BestII << ".\n");
158 // Expand the scheduling result to prologue, kernel, and epilogue.
159 expand();
160 ++NumWindowSchedule;
161 return true;
162}
163
166 return OnlyBuildGraph
167 ? new ScheduleDAGMI(
168 Context, std::make_unique<PostGenericScheduler>(Context),
169 true)
171}
172
175 LLVM_DEBUG(dbgs() << "Target disables the window scheduling!\n");
176 return false;
177 }
178 // Initialized the member variables used by window algorithm.
179 OriMIs.clear();
180 TriMIs.clear();
181 TriToOri.clear();
182 OriToCycle.clear();
183 SchedResult.clear();
184 SchedPhiNum = 0;
185 SchedInstrNum = 0;
186 BestII = UINT_MAX;
187 BestOffset = 0;
188 BaseII = 0;
189 // List scheduling used in the window algorithm depends on LiveIntervals.
190 if (!Context->LIS) {
191 LLVM_DEBUG(dbgs() << "There is no LiveIntervals information!\n");
192 return false;
193 }
194 // Check each MI in MBB.
195 SmallSet<Register, 8> PrevDefs;
196 SmallSet<Register, 8> PrevUses;
197 auto IsLoopCarried = [&](MachineInstr &Phi) {
198 // Two cases are checked here: (1)The virtual register defined by the
199 // preceding phi is used by the succeeding phi;(2)The preceding phi uses the
200 // virtual register defined by the succeeding phi.
201 if (PrevUses.count(Phi.getOperand(0).getReg()))
202 return true;
203 PrevDefs.insert(Phi.getOperand(0).getReg());
204 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
205 if (PrevDefs.count(Phi.getOperand(I).getReg()))
206 return true;
207 PrevUses.insert(Phi.getOperand(I).getReg());
208 }
209 return false;
210 };
211 auto PLI = TII->analyzeLoopForPipelining(MBB);
212 for (auto &MI : *MBB) {
213 if (MI.isMetaInstruction() || MI.isTerminator())
214 continue;
215 if (MI.isPHI()) {
216 if (IsLoopCarried(MI)) {
217 LLVM_DEBUG(dbgs() << "Loop carried phis are not supported yet!\n");
218 return false;
219 }
220 ++SchedPhiNum;
221 ++BestOffset;
222 } else
224 if (TII->isSchedulingBoundary(MI, MBB, *MF)) {
226 dbgs() << "Boundary MI is not allowed in window scheduling!\n");
227 return false;
228 }
229 if (PLI->shouldIgnoreForPipelining(&MI)) {
230 LLVM_DEBUG(dbgs() << "Special MI defined by target is not allowed in "
231 "window scheduling!\n");
232 return false;
233 }
234 for (auto &Def : MI.all_defs())
235 if (Def.isReg() && Def.getReg().isPhysical()) {
236 LLVM_DEBUG(dbgs() << "Physical registers are not supported in "
237 "window scheduling!\n");
238 return false;
239 }
240 }
241 if (SchedInstrNum <= WindowRegionLimit) {
242 LLVM_DEBUG(dbgs() << "There are too few MIs in the window region!\n");
243 return false;
244 }
245 return true;
246}
247
249 // Prior to window scheduling, it's necessary to backup the original MBB,
250 // generate a new TripleMBB, and build a TripleDAG based on the TripleMBB.
251 backupMBB();
253 TripleDAG->startBlock(MBB);
254 TripleDAG->enterRegion(
256 std::distance(MBB->begin(), MBB->getFirstTerminator()));
257 TripleDAG->buildSchedGraph(Context->AA);
258}
259
261 // After window scheduling, it's necessary to clear the TripleDAG and restore
262 // to the original MBB.
263 TripleDAG->exitRegion();
264 TripleDAG->finishBlock();
265 restoreMBB();
266}
267
269 for (auto &MI : MBB->instrs())
271 // Remove MIs and the corresponding live intervals.
272 for (auto &MI : make_early_inc_range(*MBB)) {
274 MBB->remove(&MI);
275 }
276}
277
279 // Erase MIs and the corresponding live intervals.
280 for (auto &MI : make_early_inc_range(*MBB)) {
282 MI.eraseFromParent();
283 }
284 // Restore MBB to the state before window scheduling.
285 for (auto *MI : OriMIs)
286 MBB->push_back(MI);
288}
289
291 const unsigned DuplicateNum = 3;
292 TriMIs.clear();
293 TriToOri.clear();
294 assert(OriMIs.size() > 0 && "The Original MIs were not backed up!");
295 // Step 1: Performing the first copy of MBB instructions, excluding
296 // terminators. At the same time, we back up the anti-register of phis.
297 // DefPairs hold the old and new define register pairs.
299 for (auto *MI : OriMIs) {
300 if (MI->isMetaInstruction() || MI->isTerminator())
301 continue;
302 if (MI->isPHI())
303 if (Register AntiReg = getAntiRegister(MI))
304 DefPairs[MI->getOperand(0).getReg()] = AntiReg;
305 auto *NewMI = MF->CloneMachineInstr(MI);
306 MBB->push_back(NewMI);
307 TriMIs.push_back(NewMI);
308 TriToOri[NewMI] = MI;
309 }
310 // Step 2: Performing the remaining two copies of MBB instructions excluding
311 // phis, and the last one contains terminators. At the same time, registers
312 // are updated accordingly.
313 for (size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
314 for (auto *MI : OriMIs) {
315 if (MI->isPHI() || MI->isMetaInstruction() ||
316 (MI->isTerminator() && Cnt < DuplicateNum - 1))
317 continue;
318 auto *NewMI = MF->CloneMachineInstr(MI);
320 // New defines are updated.
321 for (auto MO : NewMI->all_defs())
322 if (MO.isReg() && MO.getReg().isVirtual()) {
323 Register NewDef =
325 NewMI->substituteRegister(MO.getReg(), NewDef, 0, *TRI);
326 NewDefs[MO.getReg()] = NewDef;
327 }
328 // New uses are updated.
329 for (auto DefRegPair : DefPairs)
330 if (NewMI->readsRegister(DefRegPair.first, TRI)) {
331 Register NewUse = DefRegPair.second;
332 // Note the update process for '%1 -> %9' in '%10 = sub i32 %9, %3':
333 //
334 // BB.3: DefPairs
335 // ==================================
336 // %1 = phi i32 [%2, %BB.1], [%7, %BB.3] (%1,%7)
337 // ...
338 // ==================================
339 // ...
340 // %4 = sub i32 %1, %3
341 // ...
342 // %7 = add i32 %5, %6
343 // ...
344 // ----------------------------------
345 // ...
346 // %8 = sub i32 %7, %3 (%1,%7),(%4,%8)
347 // ...
348 // %9 = add i32 %5, %6 (%1,%7),(%4,%8),(%7,%9)
349 // ...
350 // ----------------------------------
351 // ...
352 // %10 = sub i32 %9, %3 (%1,%7),(%4,%10),(%7,%9)
353 // ... ^
354 // %11 = add i32 %5, %6 (%1,%7),(%4,%10),(%7,%11)
355 // ...
356 // ==================================
357 // < Terminators >
358 // ==================================
359 if (DefPairs.count(NewUse))
360 NewUse = DefPairs[NewUse];
361 NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *TRI);
362 }
363 // DefPairs is updated at last.
364 for (auto &NewDef : NewDefs)
365 DefPairs[NewDef.first] = NewDef.second;
366 MBB->push_back(NewMI);
367 TriMIs.push_back(NewMI);
368 TriToOri[NewMI] = MI;
369 }
370 }
371 // Step 3: The registers used by phis are updated, and they are generated in
372 // the third copy of MBB.
373 // In the privious example, the old phi is:
374 // %1 = phi i32 [%2, %BB.1], [%7, %BB.3]
375 // The new phi is:
376 // %1 = phi i32 [%2, %BB.1], [%11, %BB.3]
377 for (auto &Phi : MBB->phis()) {
378 for (auto DefRegPair : DefPairs)
379 if (Phi.readsRegister(DefRegPair.first, TRI))
380 Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *TRI);
381 }
383}
384
386 // After list scheduling, the MBB is restored in one traversal.
387 for (size_t I = 0; I < TriMIs.size(); ++I) {
388 auto *MI = TriMIs[I];
389 auto OldPos = MBB->begin();
390 std::advance(OldPos, I);
391 auto CurPos = MI->getIterator();
392 if (CurPos != OldPos) {
393 MBB->splice(OldPos, MBB, CurPos);
394 Context->LIS->handleMove(*MI, /*UpdateFlags=*/false);
395 }
396 }
397}
398
400 unsigned SearchRatio) {
401 // We use SearchRatio to get the index range, and then evenly get the indexes
402 // according to the SearchNum. This is a simple huristic. Depending on the
403 // characteristics of the target, more complex algorithms can be used for both
404 // performance and compilation time.
405 assert(SearchRatio <= 100 && "SearchRatio should be equal or less than 100!");
406 unsigned MaxIdx = SchedInstrNum * SearchRatio / 100;
407 unsigned Step = SearchNum > 0 && SearchNum <= MaxIdx ? MaxIdx / SearchNum : 1;
408 SmallVector<unsigned> SearchIndexes;
409 for (unsigned Idx = 0; Idx < MaxIdx; Idx += Step)
410 SearchIndexes.push_back(Idx);
411 return SearchIndexes;
412}
413
415 // Sometimes MaxDepth is 0, so it should be limited to the minimum of 1.
416 unsigned MaxDepth = 1;
417 for (auto &SU : DAG.SUnits)
418 MaxDepth = std::max(SU.getDepth() + SU.Latency, MaxDepth);
419 return MaxDepth * WindowIICoeff;
420}
421
423 unsigned Offset) {
424 int InitII = getEstimatedII(DAG);
425 ResourceManager RM(Subtarget, &DAG);
426 RM.init(InitII);
427 // ResourceManager and DAG are used to calculate the maximum cycle for the
428 // scheduled MIs. Since MIs in the Region have already been scheduled, the
429 // emit cycles can be estimated in order here.
430 int CurCycle = 0;
432 for (auto &MI : Range) {
433 auto *SU = DAG.getSUnit(&MI);
434 int ExpectCycle = CurCycle;
435 // The predecessors of current MI determine its earliest issue cycle.
436 for (auto &Pred : SU->Preds) {
437 if (Pred.isWeak())
438 continue;
439 auto *PredMI = Pred.getSUnit()->getInstr();
440 int PredCycle = getOriCycle(PredMI);
441 ExpectCycle = std::max(ExpectCycle, PredCycle + (int)Pred.getLatency());
442 }
443 // Zero cost instructions do not need to check resource.
444 if (!TII->isZeroCost(MI.getOpcode())) {
445 // ResourceManager can be used to detect resource conflicts between the
446 // current MI and the previously inserted MIs.
447 while (!RM.canReserveResources(*SU, CurCycle) || CurCycle < ExpectCycle) {
448 ++CurCycle;
449 if (CurCycle == (int)WindowIILimit)
450 return CurCycle;
451 }
452 RM.reserveResources(*SU, CurCycle);
453 }
454 OriToCycle[getOriMI(&MI)] = CurCycle;
455 LLVM_DEBUG(dbgs() << "\tCycle " << CurCycle << " [S."
456 << getOriStage(getOriMI(&MI), Offset) << "]: " << MI);
457 }
458 LLVM_DEBUG(dbgs() << "MaxCycle is " << CurCycle << ".\n");
459 return CurCycle;
460}
461
462// By utilizing TripleDAG, we can easily establish dependencies between A and B.
463// Based on the MaxCycle and the issue cycle of A and B, we can determine
464// whether it is necessary to add a stall cycle. This is because, without
465// inserting the stall cycle, the latency constraint between A and B cannot be
466// satisfied. The details are as follows:
467//
468// New MBB:
469// ========================================
470// < Phis >
471// ======================================== (sliding direction)
472// MBB copy 1 |
473// V
474//
475// ~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~ ----schedule window-----
476// | |
477// ===================V==================== |
478// MBB copy 2 < MI B > |
479// |
480// < MI A > V
481// ~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~ ------------------------
482// :
483// ===================V====================
484// MBB copy 3 < MI B'>
485//
486//
487//
488//
489// ========================================
490// < Terminators >
491// ========================================
492int WindowScheduler::calculateStallCycle(unsigned Offset, int MaxCycle) {
493 int MaxStallCycle = 0;
494 int CurrentII = MaxCycle + 1;
496 for (auto &MI : Range) {
497 auto *SU = TripleDAG->getSUnit(&MI);
498 int DefCycle = getOriCycle(&MI);
499 for (auto &Succ : SU->Succs) {
500 if (Succ.isWeak() || Succ.getSUnit() == &TripleDAG->ExitSU)
501 continue;
502 // If the expected cycle does not exceed CurrentII, no check is needed.
503 if (DefCycle + (int)Succ.getLatency() <= CurrentII)
504 continue;
505 // If the cycle of the scheduled MI A is less than that of the scheduled
506 // MI B, the scheduling will fail because the lifetime of the
507 // corresponding register exceeds II.
508 auto *SuccMI = Succ.getSUnit()->getInstr();
509 int UseCycle = getOriCycle(SuccMI);
510 if (DefCycle < UseCycle)
511 return WindowIILimit;
512 // Get the stall cycle introduced by the register between two trips.
513 int StallCycle = DefCycle + (int)Succ.getLatency() - CurrentII - UseCycle;
514 MaxStallCycle = std::max(MaxStallCycle, StallCycle);
515 }
516 }
517 LLVM_DEBUG(dbgs() << "MaxStallCycle is " << MaxStallCycle << ".\n");
518 return MaxStallCycle;
519}
520
522 LLVM_DEBUG(dbgs() << "Start analyzing II:\n");
523 int MaxCycle = calculateMaxCycle(DAG, Offset);
524 if (MaxCycle == (int)WindowIILimit)
525 return MaxCycle;
526 int StallCycle = calculateStallCycle(Offset, MaxCycle);
527 if (StallCycle == (int)WindowIILimit)
528 return StallCycle;
529 // The value of II is equal to the maximum execution cycle plus 1.
530 return MaxCycle + StallCycle + 1;
531}
532
534 LLVM_DEBUG(dbgs() << "Start scheduling Phis:\n");
535 for (auto &Phi : MBB->phis()) {
536 int LateCycle = INT_MAX;
537 auto *SU = TripleDAG->getSUnit(&Phi);
538 for (auto &Succ : SU->Succs) {
539 // Phi doesn't have any Anti successors.
540 if (Succ.getKind() != SDep::Data)
541 continue;
542 // Phi is scheduled before the successor of stage 0. The issue cycle of
543 // phi is the latest cycle in this interval.
544 auto *SuccMI = Succ.getSUnit()->getInstr();
545 int Cycle = getOriCycle(SuccMI);
546 if (getOriStage(getOriMI(SuccMI), Offset) == 0)
547 LateCycle = std::min(LateCycle, Cycle);
548 }
549 // The anti-dependency of phi need to be handled separately in the same way.
550 if (Register AntiReg = getAntiRegister(&Phi)) {
551 auto *AntiMI = MRI->getVRegDef(AntiReg);
552 // AntiReg may be defined outside the kernel MBB.
553 if (AntiMI->getParent() == MBB) {
554 auto AntiCycle = getOriCycle(AntiMI);
555 if (getOriStage(getOriMI(AntiMI), Offset) == 0)
556 LateCycle = std::min(LateCycle, AntiCycle);
557 }
558 }
559 // If there is no limit to the late cycle, a default value is given.
560 if (LateCycle == INT_MAX)
561 LateCycle = (int)(II - 1);
562 LLVM_DEBUG(dbgs() << "\tCycle range [0, " << LateCycle << "] " << Phi);
563 // The issue cycle of phi is set to the latest cycle in the interval.
564 auto *OriPhi = getOriMI(&Phi);
565 OriToCycle[OriPhi] = LateCycle;
566 }
567}
568
570 unsigned II) {
571 // At each issue cycle, phi is placed before MIs in stage 0. So the simplest
572 // way is to put phi at the beginning of the current cycle.
575 for (auto &Phi : MBB->phis())
576 CycleToMIs[getOriCycle(&Phi)].push_back(getOriMI(&Phi));
577 for (auto &MI : Range)
578 CycleToMIs[getOriCycle(&MI)].push_back(getOriMI(&MI));
579 // Each MI is assigned a separate ordered Id, which is used as a sort marker
580 // in the following expand process.
582 int Id = 0;
583 for (int Cycle = 0; Cycle < (int)II; ++Cycle) {
584 if (!CycleToMIs.count(Cycle))
585 continue;
586 for (auto *MI : CycleToMIs[Cycle])
587 IssueOrder[MI] = Id++;
588 }
589 return IssueOrder;
590}
591
593 // At the first update, Offset is equal to SchedPhiNum. At this time, only
594 // BestII, BestOffset, and BaseII need to be updated.
595 if (Offset == SchedPhiNum) {
596 BestII = II;
598 BaseII = II;
599 return;
600 }
601 // The update will only continue if the II is smaller than BestII and the II
602 // is sufficiently small.
603 if ((II >= BestII) || (II + WindowDiffLimit > BaseII))
604 return;
605 BestII = II;
607 // Record the result of the current list scheduling, noting that each MI is
608 // stored unordered in SchedResult.
609 SchedResult.clear();
610 auto IssueOrder = getIssueOrder(Offset, II);
611 for (auto &Pair : OriToCycle) {
612 assert(IssueOrder.count(Pair.first) && "Cannot find original MI!");
613 SchedResult.push_back(std::make_tuple(Pair.first, Pair.second,
614 getOriStage(Pair.first, Offset),
615 IssueOrder[Pair.first]));
616 }
617}
618
620 // The MIs in the SchedResult are sorted by the issue order ID.
622 [](const std::tuple<MachineInstr *, int, int, int> &A,
623 const std::tuple<MachineInstr *, int, int, int> &B) {
624 return std::get<3>(A) < std::get<3>(B);
625 });
626 // Use the scheduling infrastructure for expansion, noting that InstrChanges
627 // is not supported here.
628 DenseMap<MachineInstr *, int> Cycles, Stages;
629 std::vector<MachineInstr *> OrderedInsts;
630 for (auto &Info : SchedResult) {
631 auto *MI = std::get<0>(Info);
632 OrderedInsts.push_back(MI);
633 Cycles[MI] = std::get<1>(Info);
634 Stages[MI] = std::get<2>(Info);
635 LLVM_DEBUG(dbgs() << "\tCycle " << Cycles[MI] << " [S." << Stages[MI]
636 << "]: " << *MI);
637 }
638 ModuloSchedule MS(*MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
639 std::move(Stages));
642 MSE.expand();
643 MSE.cleanup();
644}
645
648 for (MachineInstr &MI : *MBB)
649 for (const MachineOperand &MO : MI.operands()) {
650 if (!MO.isReg() || MO.getReg() == 0)
651 continue;
652 Register Reg = MO.getReg();
653 if (!is_contained(UsedRegs, Reg))
654 UsedRegs.push_back(Reg);
655 }
656 Context->LIS->repairIntervalsInRange(MBB, MBB->begin(), MBB->end(), UsedRegs);
657}
658
661 auto RegionBegin = MBB->begin();
662 std::advance(RegionBegin, Offset);
663 auto RegionEnd = RegionBegin;
664 std::advance(RegionEnd, Num);
665 return make_range(RegionBegin, RegionEnd);
666}
667
669 assert(TriToOri.count(NewMI) && "Cannot find original MI!");
670 auto *OriMI = TriToOri[NewMI];
671 assert(OriToCycle.count(OriMI) && "Cannot find schedule cycle!");
672 return OriToCycle[OriMI];
673}
674
676 assert(TriToOri.count(NewMI) && "Cannot find original MI!");
677 return TriToOri[NewMI];
678}
679
681 assert(llvm::find(OriMIs, OriMI) != OriMIs.end() &&
682 "Cannot find OriMI in OriMIs!");
683 // If there is no instruction fold, all MI stages are 0.
684 if (Offset == SchedPhiNum)
685 return 0;
686 // For those MIs with an ID less than the Offset, their stages are set to 0,
687 // while the rest are set to 1.
688 unsigned Id = 0;
689 for (auto *MI : OriMIs) {
690 if (MI->isMetaInstruction())
691 continue;
692 if (MI == OriMI)
693 break;
694 ++Id;
695 }
696 return Id >= (size_t)Offset ? 1 : 0;
697}
698
700 assert(Phi->isPHI() && "Expecting PHI!");
701 Register AntiReg;
702 for (auto MO : Phi->uses()) {
703 if (MO.isReg())
704 AntiReg = MO.getReg();
705 else if (MO.isMBB() && MO.getMBB() == MBB)
706 return AntiReg;
707 }
708 return 0;
709}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static const unsigned MaxDepth
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
Target-Independent Code Generator Pass Configuration Options pass.
cl::opt< unsigned > WindowIILimit("window-ii-limit", cl::desc("The upper limit of II in the window algorithm."), cl::Hidden, cl::init(1000))
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
A possibly irreducible generalization of a Loop.
void repairIntervalsInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, ArrayRef< Register > OrigRegs)
Update live intervals for instructions in a range of iterators.
void handleMove(MachineInstr &MI, bool UpdateFlags=false)
Call this method to notify LiveIntervals that instruction MI has been moved within a basic block.
SlotIndexes * getSlotIndexes() const
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
iterator_range< iterator > phis()
Returns a range that iterates over the phis in the basic block.
void push_back(MachineInstr *MI)
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
MachineInstr * getVRegDef(Register Reg) const
getVRegDef - Return the machine instr that defines the specified virtual register or null if none is ...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, rewriting the old loop and...
void cleanup()
Performs final cleanup after expansion.
void expand()
Performs the actual expansion.
Represents a schedule for a single-block loop.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
@ Data
Regular data dependence (aka true-dependence).
Definition: ScheduleDAG.h:53
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
Definition: ScheduleDAG.h:390
A ScheduleDAG for scheduling lists of MachineInstr.
SUnit * getSUnit(MachineInstr *MI) const
Returns an existing SUnit for this MI, or nullptr.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
std::vector< SUnit > SUnits
The scheduling units.
Definition: ScheduleDAG.h:579
void removeMachineInstrFromMaps(MachineInstr &MI, bool AllowBundled=false)
Removes machine instruction (bundle) MI from the mapping.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:132
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:175
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:181
size_t size() const
Definition: SmallVector.h:78
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
virtual std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
bool isZeroCost(unsigned Opcode) const
Return true for pseudo instructions that don't consume any machine resources in their current form.
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const
Create an instance of ScheduleDAGInstrs to be run within the standard MachineScheduler pass for this ...
virtual bool enableWindowScheduler() const
True if the subtarget should run WindowScheduler.
The TimeTraceScope is a helper class to call the begin and end functions of the time trace profiler.
Definition: TimeProfiler.h:180
MachineInstr * getOriMI(MachineInstr *NewMI)
Get the original MI from which the new MI is cloned.
virtual ScheduleDAGInstrs * createMachineScheduler(bool OnlyBuildGraph=false)
Two types of ScheduleDAGs are needed, one for creating dependency graphs only, and the other for list...
unsigned SchedPhiNum
SchedPhiNum records the number of phi in the original MBB, and the scheduling starts with MI after ph...
virtual void preProcess()
Add some related processing before running window scheduling.
MachineSchedContext * Context
virtual void restoreTripleMBB()
Restore the order of MIs in TripleMBB after each list scheduling.
virtual void postProcess()
Add some related processing after running window scheduling.
DenseMap< MachineInstr *, int > OriToCycle
OriToCycle keeps the mappings between the original MI and its issue cycle.
virtual int calculateMaxCycle(ScheduleDAGInstrs &DAG, unsigned Offset)
Calculate MIs execution cycle after list scheduling.
MachineRegisterInfo * MRI
MachineBasicBlock * MBB
unsigned BestII
BestII and BestOffset record the characteristics of the best scheduling result and are used together ...
void backupMBB()
Back up the MIs in the original MBB and remove them from MBB.
DenseMap< MachineInstr *, MachineInstr * > TriToOri
TriToOri keeps the mappings between the MI clones in TripleMBB and their original MI.
int getEstimatedII(ScheduleDAGInstrs &DAG)
Estimate a II value at which all MIs will be scheduled successfully.
virtual void expand()
Using the scheduling infrastructure to expand the results of window scheduling.
DenseMap< MachineInstr *, int > getIssueOrder(unsigned Offset, unsigned II)
Get the final issue order of all scheduled MIs including phis.
Register getAntiRegister(MachineInstr *Phi)
Gets the register in phi which is generated from the current MBB.
unsigned getOriStage(MachineInstr *OriMI, unsigned Offset)
Get the scheduling stage, where the stage of the new MI is identical to the original MI.
const TargetRegisterInfo * TRI
virtual void updateLiveIntervals()
Update the live intervals for all registers used within MBB.
const TargetSubtargetInfo * Subtarget
std::unique_ptr< ScheduleDAGInstrs > TripleDAG
To innovatively identify the dependencies between MIs across two trips, we construct a DAG for a new ...
unsigned BaseII
BaseII is the II obtained when the window offset is SchedPhiNum.
virtual void schedulePhi(int Offset, unsigned &II)
Phis are scheduled separately after each list scheduling.
MachineFunction * MF
virtual unsigned analyseII(ScheduleDAGInstrs &DAG, unsigned Offset)
Analyzes the II value after each list scheduling.
int getOriCycle(MachineInstr *NewMI)
Get the issue cycle of the new MI based on the cycle of the original MI.
unsigned SchedInstrNum
SchedInstrNum records the MIs involved in scheduling in the original MBB, excluding debug instruction...
const TargetInstrInfo * TII
virtual void generateTripleMBB()
Make three copies of the original MBB to generate a new TripleMBB.
iterator_range< MachineBasicBlock::iterator > getScheduleRange(unsigned Offset, unsigned Num)
Gets the iterator range of MIs in the scheduling window.
virtual bool isScheduleValid()
Check whether the final result of window scheduling is valid.
virtual int calculateStallCycle(unsigned Offset, int MaxCycle)
Calculate the stall cycle between two trips after list scheduling.
virtual void updateScheduleResult(unsigned Offset, unsigned II)
Update the scheduling result after each list scheduling.
SmallVector< MachineInstr * > OriMIs
OriMIs keeps the MIs removed from the original MBB.
virtual bool initialize()
Initializes the algorithm and determines if it can be executed.
SmallVector< std::tuple< MachineInstr *, int, int, int >, 256 > SchedResult
SchedResult keeps the result of each list scheduling, and the format of the tuple is <MI pointer,...
virtual SmallVector< unsigned > getSearchIndexes(unsigned SearchNum, unsigned SearchRatio)
Give the folding position in the window algorithm, where different heuristics can be used.
void restoreMBB()
Erase the MIs in current MBB and restore the original MIs.
WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
SmallVector< MachineInstr * > TriMIs
TriMIs keeps the MIs of TripleMBB, which is used to restore TripleMBB.
A range adaptor for a pair of iterators.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
void stable_sort(R &&Range)
Definition: STLExtras.h:2037
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1759
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
CycleInfo::CycleT Cycle
Definition: CycleInfo.h:24
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...
const TargetPassConfig * PassConfig