15#define DEBUG_TYPE "loop-constrainer"
21 unsigned LatchBrExitIdx,
Loop *L,
23 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
24 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
37 LLVM_DEBUG(
dbgs() <<
"LatchExitBrIdx: " << LatchBrExitIdx <<
"\n");
39 bool IsSigned = ICmpInst::isSigned(Pred);
48 if (LatchBrExitIdx == 1)
51 assert(LatchBrExitIdx == 0 &&
"LatchBrExitIdx should be either 0 or 1");
54 unsigned BitWidth = cast<IntegerType>(BoundSCEV->
getType())->getBitWidth();
59 const SCEV *MinusOne =
70 unsigned LatchBrExitIdx,
Loop *L,
72 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
73 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
84 LLVM_DEBUG(
dbgs() <<
"LatchExitBrIdx: " << LatchBrExitIdx <<
"\n");
86 bool IsSigned = ICmpInst::isSigned(Pred);
95 if (LatchBrExitIdx == 1)
98 assert(LatchBrExitIdx == 0 &&
"LatchBrExitIdx should be 0 or 1");
101 unsigned BitWidth = cast<IntegerType>(BoundSCEV->
getType())->getBitWidth();
117 const SCEV *FromBlock =
119 if (isa<SCEVCouldNotCompute>(FromBlock))
124std::optional<LoopStructure>
126 bool AllowUnsignedLatchCond,
127 const char *&FailureReason) {
128 if (!L.isLoopSimplifyForm()) {
129 FailureReason =
"loop not in LoopSimplify form";
134 assert(
Latch &&
"Simplified loops only have one latch!");
137 FailureReason =
"loop has already been cloned";
141 if (!L.isLoopExiting(
Latch)) {
142 FailureReason =
"no loop latch";
149 FailureReason =
"no preheader";
155 FailureReason =
"latch terminator not conditional branch";
163 FailureReason =
"latch terminator branch not conditional on integral icmp";
168 if (isa<SCEVCouldNotCompute>(MaxBETakenCount)) {
169 FailureReason =
"could not compute latch count";
174 "loop variant exit count doesn't make sense!");
185 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
186 if (isa<SCEVAddRecExpr>(RightSCEV)) {
191 FailureReason =
"no add recurrences in the icmp";
200 IntegerType *Ty = cast<IntegerType>(AR->getType());
208 const SCEV *ExtendedStep =
211 bool NoSignedWrap = ExtendAfterOp->
getStart() == ExtendedStart &&
227 FailureReason =
"LHS in cmp is not an AddRec for this loop";
231 FailureReason =
"LHS in icmp not induction variable";
235 if (!isa<SCEVConstant>(StepRec)) {
236 FailureReason =
"LHS in icmp not induction variable";
242 FailureReason =
"LHS in icmp needs nsw for equality predicates";
254 const SCEV *FixedRightSCEV =
nullptr;
258 if (
auto *
I = dyn_cast<Instruction>(RightValue))
259 if (L.contains(
I->getParent()))
260 FixedRightSCEV = RightSCEV;
263 bool DecreasedRightValueByOne =
false;
264 if (StepCI->
isOne()) {
289 DecreasedRightValueByOne =
true;
294 DecreasedRightValueByOne =
true;
301 bool FoundExpectedPred =
304 if (!FoundExpectedPred) {
305 FailureReason =
"expected icmp slt semantically, found something else";
311 FailureReason =
"unsigned latch conditions are explicitly prohibited";
317 FailureReason =
"Unsafe loop bounds";
323 if (!DecreasedRightValueByOne)
327 assert(!DecreasedRightValueByOne &&
328 "Right value can be decreased only for LatchBrExitIdx == 0!");
331 bool IncreasedRightValueByOne =
false;
352 IncreasedRightValueByOne =
true;
356 IncreasedRightValueByOne =
true;
364 bool FoundExpectedPred =
367 if (!FoundExpectedPred) {
368 FailureReason =
"expected icmp sgt semantically, found something else";
376 FailureReason =
"unsigned latch conditions are explicitly prohibited";
382 FailureReason =
"Unsafe bounds";
389 if (!IncreasedRightValueByOne)
393 assert(!IncreasedRightValueByOne &&
394 "Right value can be increased only for LatchBrExitIdx == 0!");
409 IndVarStartV->
setName(
"indvar.start");
415 Result.Latch =
Latch;
419 Result.IndVarStart = IndVarStartV;
420 Result.IndVarStep = StepCI;
421 Result.IndVarBase = LeftValue;
422 Result.IndVarIncreasing = IsIncreasing;
423 Result.LoopExitAt = RightValue;
425 Result.ExitCountTy = cast<IntegerType>(MaxBETakenCount->
getType());
427 FailureReason =
nullptr;
437 LLVMContext &Context = L.getHeader()->getContext();
441 Context, {
MDString::get(Context,
"llvm.loop.unroll.disable")});
446 {
MDString::get(Context,
"llvm.loop.vectorize.enable"), FalseVal});
448 Context, {
MDString::get(Context,
"llvm.loop.licm_versioning.disable")});
451 {
MDString::get(Context,
"llvm.loop.distribute.enable"), FalseVal});
453 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
454 DisableLICMVersioning, DisableDistribution});
457 L.setLoopID(NewLoopID);
464 :
F(*L.getHeader()->
getParent()), Ctx(L.getHeader()->getContext()), SE(SE),
465 DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), RangeTy(
T),
466 MainLoopStructure(LS), SR(SR) {}
468void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
469 const char *
Tag)
const {
472 Result.Blocks.push_back(Clone);
473 Result.Map[BB] = Clone;
476 auto GetClonedValue = [&Result](
Value *V) {
477 assert(V &&
"null values not in domain!");
478 auto It = Result.Map.find(V);
479 if (It == Result.Map.end())
481 return static_cast<Value *
>(It->second);
485 cast<BasicBlock>(GetClonedValue(OriginalLoop.
getLoopLatch()));
489 Result.Structure = MainLoopStructure.
map(GetClonedValue);
492 for (
unsigned i = 0, e =
Result.Blocks.size(); i != e; ++i) {
496 assert(
Result.Map[OriginalBB] == ClonedBB &&
"invariant!");
511 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
512 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
519LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
593 RewrittenRangeInfo RRI;
597 &F, BBInsertLocation);
602 bool Increasing =
LS.IndVarIncreasing;
603 bool IsSignedPredicate =
LS.IsSignedPredicate;
606 auto NoopOrExt = [&](
Value *
V) {
607 if (
V->getType() == RangeTy)
609 return IsSignedPredicate ?
B.CreateSExt(V, RangeTy,
"wide." +
V->getName())
610 :
B.CreateZExt(V, RangeTy,
"wide." +
V->getName());
614 Value *EnterLoopCond =
nullptr;
619 Value *IndVarStart = NoopOrExt(
LS.IndVarStart);
620 EnterLoopCond =
B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
622 B.CreateCondBr(EnterLoopCond,
LS.Header, RRI.PseudoExit);
625 LS.LatchBr->setSuccessor(
LS.LatchBrExitIdx, RRI.ExitSelector);
626 B.SetInsertPoint(
LS.LatchBr);
627 Value *IndVarBase = NoopOrExt(
LS.IndVarBase);
628 Value *TakeBackedgeLoopCond =
B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
630 Value *CondForBranch =
LS.LatchBrExitIdx == 1
631 ? TakeBackedgeLoopCond
632 :
B.CreateNot(TakeBackedgeLoopCond);
634 LS.LatchBr->setCondition(CondForBranch);
636 B.SetInsertPoint(RRI.ExitSelector);
641 Value *LoopExitAt = NoopOrExt(
LS.LoopExitAt);
642 Value *IterationsLeft =
B.CreateICmp(Pred, IndVarBase, LoopExitAt);
643 B.CreateCondBr(IterationsLeft, RRI.PseudoExit,
LS.LatchExit);
655 NewPHI->
addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
658 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
663 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
664 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
668 LS.LatchExit->replacePhiUsesWith(
LS.Latch, RRI.ExitSelector);
673void LoopConstrainer::rewriteIncomingValuesForPHIs(
675 const LoopConstrainer::RewrittenRangeInfo &RRI)
const {
676 unsigned PHIIndex = 0;
678 PN.setIncomingValueForBlock(ContinuationBlock,
679 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
681 LS.IndVarStart = RRI.IndVarEnd;
686 const char *
Tag)
const {
690 LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
704Loop *LoopConstrainer::createClonedLoopStructure(
Loop *Original,
Loop *Parent,
712 LPMAddNewLoop(&New, IsSubloop);
715 for (
auto *BB : Original->
blocks())
717 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
720 for (
Loop *SubLoop : *Original)
721 createClonedLoopStructure(SubLoop, &New, VM,
true);
728 assert(Preheader !=
nullptr &&
"precondition!");
730 OriginalPreheader = Preheader;
731 MainLoopPreheader = Preheader;
742 ClonedLoop PreLoop, PostLoop;
748 Value *ExitPreLoopAt =
nullptr;
749 Value *ExitMainLoopAt =
nullptr;
751 cast<SCEVConstant>(SE.
getConstant(IVTy, -1,
true ));
754 const SCEV *ExitPreLoopAtSCEV =
nullptr;
762 LLVM_DEBUG(
dbgs() <<
"could not prove no-overflow when computing "
763 <<
"preloop exit limit. HighLimit = "
769 LLVM_DEBUG(
dbgs() <<
"could not prove that it is safe to expand the"
770 <<
" preloop exit limit " << *ExitPreLoopAtSCEV
771 <<
" at block " << InsertPt->
getParent()->getName()
776 ExitPreLoopAt = Expander.
expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
777 ExitPreLoopAt->
setName(
"exit.preloop.at");
781 const SCEV *ExitMainLoopAtSCEV =
nullptr;
789 LLVM_DEBUG(
dbgs() <<
"could not prove no-overflow when computing "
790 <<
"mainloop exit limit. LowLimit = "
796 LLVM_DEBUG(
dbgs() <<
"could not prove that it is safe to expand the"
797 <<
" main loop exit limit " << *ExitMainLoopAtSCEV
798 <<
" at block " << InsertPt->
getParent()->getName()
803 ExitMainLoopAt = Expander.
expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
804 ExitMainLoopAt->
setName(
"exit.mainloop.at");
810 cloneLoop(PreLoop,
"preloop");
812 cloneLoop(PostLoop,
"postloop");
814 RewrittenRangeInfo PreLoopRRI;
818 PreLoop.Structure.Header);
821 createPreheader(MainLoopStructure, Preheader,
"mainloop");
822 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
823 ExitPreLoopAt, MainLoopPreheader);
824 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
829 RewrittenRangeInfo PostLoopRRI;
833 createPreheader(PostLoop.Structure, Preheader,
"postloop");
834 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
835 ExitMainLoopAt, PostLoopPreheader);
836 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
841 MainLoopPreheader != Preheader ? MainLoopPreheader :
nullptr;
842 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
843 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
844 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
849 std::remove(std::begin(NewBlocks), std::end(NewBlocks),
nullptr);
851 addToParentLoopIfNeeded(
ArrayRef(std::begin(NewBlocks), NewBlocksEnd));
859 Loop *PreL =
nullptr, *PostL =
nullptr;
860 if (!PreLoop.Blocks.empty()) {
861 PreL = createClonedLoopStructure(&OriginalLoop,
866 if (!PostLoop.Blocks.empty()) {
868 createClonedLoopStructure(&OriginalLoop, OriginalLoop.
getParentLoop(),
869 PostLoop.Map,
false);
873 auto CanonicalizeLoop = [&](
Loop *L,
bool IsOriginalLoop) {
882 CanonicalizeLoop(PreL,
false);
884 CanonicalizeLoop(PostL,
false);
885 CanonicalizeLoop(&OriginalLoop,
true);
894 if (isa<OverflowingBinaryOperator>(MainLoopStructure.
IndVarBase))
895 if (IsSignedPredicate)
896 cast<BinaryOperator>(MainLoopStructure.
IndVarBase)
897 ->setHasNoSignedWrap(
true);
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static const char * ClonedLoopTag
static const SCEV * getNarrowestLatchMaxTakenCountEstimate(ScalarEvolution &SE, const Loop &L)
Returns estimate for max latch taken count of the loop of the narrowest available type.
static bool isSafeDecreasingBound(const SCEV *Start, const SCEV *BoundSCEV, const SCEV *Step, ICmpInst::Predicate Pred, unsigned LatchBrExitIdx, Loop *L, ScalarEvolution &SE)
Given a loop with an deccreasing induction variable, is it possible to safely calculate the bounds of...
static void DisableAllLoopOptsOnLoop(Loop &L)
static bool isSafeIncreasingBound(const SCEV *Start, const SCEV *BoundSCEV, const SCEV *Step, ICmpInst::Predicate Pred, unsigned LatchBrExitIdx, Loop *L, ScalarEvolution &SE)
Given a loop with an increasing induction variable, is it possible to safely calculate the bounds of ...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Class for arbitrary precision integers.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getPredicate() const
Return the predicate for this instruction.
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
const APInt & getValue() const
Return the constant as an APInt value reference.
A parsed version of the target data layout string in and methods for querying it.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
This instruction compares its operands according to the predicate given to the constructor.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
This is an important class for using LLVM in a threaded context.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
LoopConstrainer(Loop &L, LoopInfo &LI, function_ref< void(Loop *, bool)> LPMAddNewLoop, const LoopStructure &LS, ScalarEvolution &SE, DominatorTree &DT, Type *T, SubRanges SR)
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static MDString * get(LLVMContext &Context, StringRef Str)
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This class represents a constant integer value.
This class uses information about analyze scalars to rewrite expressions in canonical form.
bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const
Return true if the given expression is safe to expand in the sense that all materialized values are d...
Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
@ LoopInvariant
The SCEV is loop-invariant.
bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static IntegerType * getInt1Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void setName(const Twine &Name)
Change the name of the value.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This is an optimization pass for GlobalISel generic memory operations.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
auto successors(const MachineBasicBlock *BB)
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned max.
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
constexpr unsigned BitWidth
bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned min.
bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-negative in loop L.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
std::optional< const SCEV * > LowLimit
std::optional< const SCEV * > HighLimit
LoopStructure map(M Map) const
static std::optional< LoopStructure > parseLoopStructure(ScalarEvolution &, Loop &, bool, const char *&)