LLVM 20.0.0git
AMDGPUSubtarget.cpp
Go to the documentation of this file.
1//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Implements the AMDGPU specific subclass of TargetSubtarget.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPUSubtarget.h"
15#include "AMDGPUCallLowering.h"
17#include "AMDGPULegalizerInfo.h"
19#include "R600Subtarget.h"
26#include "llvm/IR/IntrinsicsAMDGPU.h"
27#include "llvm/IR/IntrinsicsR600.h"
28#include "llvm/IR/MDBuilder.h"
29#include <algorithm>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "amdgpu-subtarget"
34
36
39}
40
41// Returns the maximum per-workgroup LDS allocation size (in bytes) that still
42// allows the given function to achieve an occupancy of NWaves waves per
43// SIMD / EU, taking into account only the function's *maximum* workgroup size.
44unsigned
46 const Function &F) const {
47 const unsigned WaveSize = getWavefrontSize();
48 const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
49 const unsigned WavesPerWorkgroup =
50 std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);
51
52 const unsigned WorkGroupsPerCU =
53 std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);
54
55 return getLocalMemorySize() / WorkGroupsPerCU;
56}
57
58// FIXME: Should return min,max range.
59//
60// Returns the maximum occupancy, in number of waves per SIMD / EU, that can
61// be achieved when only the given function is running on the machine; and
62// taking into account the overall number of wave slots, the (maximum) workgroup
63// size, and the per-workgroup LDS allocation size.
65 const Function &F) const {
66 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
67 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
68 if (!MaxWorkGroupsPerCu)
69 return 0;
70
71 const unsigned WaveSize = getWavefrontSize();
72
73 // FIXME: Do we need to account for alignment requirement of LDS rounding the
74 // size up?
75 // Compute restriction based on LDS usage
76 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
77
78 // This can be queried with more LDS than is possible, so just assume the
79 // worst.
80 if (NumGroups == 0)
81 return 1;
82
83 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
84
85 // Round to the number of waves per CU.
86 const unsigned MaxGroupNumWaves = divideCeil(MaxWorkGroupSize, WaveSize);
87 unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
88
89 // Number of waves per EU (SIMD).
90 MaxWaves = divideCeil(MaxWaves, getEUsPerCU());
91
92 // Clamp to the maximum possible number of waves.
93 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
94
95 // FIXME: Needs to be a multiple of the group size?
96 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
97
98 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
99 "computed invalid occupancy");
100 return MaxWaves;
101}
102
103unsigned
105 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
106 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
107}
108
109std::pair<unsigned, unsigned>
111 switch (CC) {
118 return std::pair(1, getWavefrontSize());
119 default:
120 return std::pair(1u, getMaxFlatWorkGroupSize());
121 }
122}
123
124std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
125 const Function &F) const {
126 // Default minimum/maximum flat work group sizes.
127 std::pair<unsigned, unsigned> Default =
128 getDefaultFlatWorkGroupSize(F.getCallingConv());
129
130 // Requested minimum/maximum flat work group sizes.
131 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
132 F, "amdgpu-flat-work-group-size", Default);
133
134 // Make sure requested minimum is less than requested maximum.
135 if (Requested.first > Requested.second)
136 return Default;
137
138 // Make sure requested values do not violate subtarget's specifications.
139 if (Requested.first < getMinFlatWorkGroupSize())
140 return Default;
141 if (Requested.second > getMaxFlatWorkGroupSize())
142 return Default;
143
144 return Requested;
145}
146
147std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU(
148 std::pair<unsigned, unsigned> Requested,
149 std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
150 // Default minimum/maximum number of waves per execution unit.
151 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
152
153 // If minimum/maximum flat work group sizes were explicitly requested using
154 // "amdgpu-flat-workgroup-size" attribute, then set default minimum/maximum
155 // number of waves per execution unit to values implied by requested
156 // minimum/maximum flat work group sizes.
157 unsigned MinImpliedByFlatWorkGroupSize =
158 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
159 Default.first = MinImpliedByFlatWorkGroupSize;
160
161 // Make sure requested minimum is less than requested maximum.
162 if (Requested.second && Requested.first > Requested.second)
163 return Default;
164
165 // Make sure requested values do not violate subtarget's specifications.
166 if (Requested.first < getMinWavesPerEU() ||
167 Requested.second > getMaxWavesPerEU())
168 return Default;
169
170 // Make sure requested values are compatible with values implied by requested
171 // minimum/maximum flat work group sizes.
172 if (Requested.first < MinImpliedByFlatWorkGroupSize)
173 return Default;
174
175 return Requested;
176}
177
178std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
179 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
180 // Default minimum/maximum number of waves per execution unit.
181 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
182
183 // Requested minimum/maximum number of waves per execution unit.
184 std::pair<unsigned, unsigned> Requested =
185 AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", Default, true);
186 return getEffectiveWavesPerEU(Requested, FlatWorkGroupSizes);
187}
188
189static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
190 auto *Node = Kernel.getMetadata("reqd_work_group_size");
191 if (Node && Node->getNumOperands() == 3)
192 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
193 return std::numeric_limits<unsigned>::max();
194}
195
197 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
198}
199
201 unsigned Dimension) const {
202 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
203 if (ReqdSize != std::numeric_limits<unsigned>::max())
204 return ReqdSize - 1;
205 return getFlatWorkGroupSizes(Kernel).second - 1;
206}
207
209 for (int I = 0; I < 3; ++I) {
210 if (getMaxWorkitemID(Func, I) > 0)
211 return false;
212 }
213
214 return true;
215}
216
218 Function *Kernel = I->getParent()->getParent();
219 unsigned MinSize = 0;
220 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
221 bool IdQuery = false;
222
223 // If reqd_work_group_size is present it narrows value down.
224 if (auto *CI = dyn_cast<CallInst>(I)) {
225 const Function *F = CI->getCalledFunction();
226 if (F) {
227 unsigned Dim = UINT_MAX;
228 switch (F->getIntrinsicID()) {
229 case Intrinsic::amdgcn_workitem_id_x:
230 case Intrinsic::r600_read_tidig_x:
231 IdQuery = true;
232 [[fallthrough]];
233 case Intrinsic::r600_read_local_size_x:
234 Dim = 0;
235 break;
236 case Intrinsic::amdgcn_workitem_id_y:
237 case Intrinsic::r600_read_tidig_y:
238 IdQuery = true;
239 [[fallthrough]];
240 case Intrinsic::r600_read_local_size_y:
241 Dim = 1;
242 break;
243 case Intrinsic::amdgcn_workitem_id_z:
244 case Intrinsic::r600_read_tidig_z:
245 IdQuery = true;
246 [[fallthrough]];
247 case Intrinsic::r600_read_local_size_z:
248 Dim = 2;
249 break;
250 default:
251 break;
252 }
253
254 if (Dim <= 3) {
255 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
256 if (ReqdSize != std::numeric_limits<unsigned>::max())
257 MinSize = MaxSize = ReqdSize;
258 }
259 }
260 }
261
262 if (!MaxSize)
263 return false;
264
265 // Range metadata is [Lo, Hi). For ID query we need to pass max size
266 // as Hi. For size query we need to pass Hi + 1.
267 if (IdQuery)
268 MinSize = 0;
269 else
270 ++MaxSize;
271
272 APInt Lower{32, MinSize};
273 APInt Upper{32, MaxSize};
274 if (auto *CI = dyn_cast<CallBase>(I)) {
276 CI->addRangeRetAttr(Range);
277 } else {
278 MDBuilder MDB(I->getContext());
279 MDNode *MaxWorkGroupSizeRange = MDB.createRange(Lower, Upper);
280 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
281 }
282 return true;
283}
284
286 assert(AMDGPU::isKernel(F.getCallingConv()));
287
288 // We don't allocate the segment if we know the implicit arguments weren't
289 // used, even if the ABI implies we need them.
290 if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
291 return 0;
292
293 if (isMesaKernel(F))
294 return 16;
295
296 // Assume all implicit inputs are used by default
297 const Module *M = F.getParent();
298 unsigned NBytes =
300 return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
301 NBytes);
302}
303
305 Align &MaxAlign) const {
306 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
307 F.getCallingConv() == CallingConv::SPIR_KERNEL);
308
309 const DataLayout &DL = F.getDataLayout();
310 uint64_t ExplicitArgBytes = 0;
311 MaxAlign = Align(1);
312
313 for (const Argument &Arg : F.args()) {
314 if (Arg.hasAttribute("amdgpu-hidden-argument"))
315 continue;
316
317 const bool IsByRef = Arg.hasByRefAttr();
318 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
319 Align Alignment = DL.getValueOrABITypeAlignment(
320 IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
321 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
322 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
323 MaxAlign = std::max(MaxAlign, Alignment);
324 }
325
326 return ExplicitArgBytes;
327}
328
330 Align &MaxAlign) const {
331 if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL &&
332 F.getCallingConv() != CallingConv::SPIR_KERNEL)
333 return 0;
334
335 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
336
337 unsigned ExplicitOffset = getExplicitKernelArgOffset();
338
339 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
340 unsigned ImplicitBytes = getImplicitArgNumBytes(F);
341 if (ImplicitBytes != 0) {
342 const Align Alignment = getAlignmentForImplicitArgPtr();
343 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
344 MaxAlign = std::max(MaxAlign, Alignment);
345 }
346
347 // Being able to dereference past the end is useful for emitting scalar loads.
348 return alignTo(TotalSize, 4);
349}
350
354}
355
358 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
359 return static_cast<const AMDGPUSubtarget &>(MF.getSubtarget<R600Subtarget>());
360}
361
363 if (TM.getTargetTriple().getArch() == Triple::amdgcn)
364 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
365 return static_cast<const AMDGPUSubtarget &>(
366 TM.getSubtarget<R600Subtarget>(F));
367}
368
369// FIXME: This has no reason to be in subtarget
372 return AMDGPU::getIntegerVecAttribute(F, "amdgpu-max-num-workgroups", 3,
373 std::numeric_limits<uint32_t>::max());
374}
This file describes how to lower LLVM calls to machine code calls.
This file declares the targeting of the InstructionSelector class for AMDGPU.
This file declares the targeting of the Machinelegalizer class for AMDGPU.
This file declares the targeting of the RegisterBankInfo class for AMDGPU.
static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim)
Base class for AMDGPU specific classes of TargetSubtarget.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file describes how to lower LLVM inline asm to machine code INLINEASM.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
if(PassOpts->AAPipeline)
AMDGPU R600 specific subclass of TargetSubtarget.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned getOccupancyWithLocalMemSize(uint32_t Bytes, const Function &) const
Inverse of getMaxLocalMemWithWaveCount.
std::pair< unsigned, unsigned > getDefaultFlatWorkGroupSize(CallingConv::ID CC) const
Align getAlignmentForImplicitArgPtr() const
unsigned getEUsPerCU() const
Number of SIMDs/EUs (execution units) per "CU" ("compute unit"), where the "CU" is the unit onto whic...
bool isMesaKernel(const Function &F) const
std::pair< unsigned, unsigned > getWavesPerEU(const Function &F) const
bool useRealTrue16Insts() const
Return true if real (non-fake) variants of True16 instructions using 16-bit registers should be code-...
virtual unsigned getMinWavesPerEU() const =0
std::pair< unsigned, unsigned > getFlatWorkGroupSizes(const Function &F) const
bool makeLIDRangeMetadata(Instruction *I) const
Creates value range metadata on an workitemid.* intrinsic call or load.
unsigned getMaxWorkitemID(const Function &Kernel, unsigned Dimension) const
Return the maximum workitem ID value in the function, for the given (0, 1, 2) dimension.
unsigned getImplicitArgNumBytes(const Function &F) const
unsigned getLocalMemorySize() const
Return the maximum number of bytes of LDS available for all workgroups running on the same WGP or CU.
SmallVector< unsigned > getMaxNumWorkGroups(const Function &F) const
Return the number of work groups for the function.
virtual unsigned getWavesPerEUForWorkGroup(unsigned FlatWorkGroupSize) const =0
virtual unsigned getMaxWorkGroupsPerCU(unsigned FlatWorkGroupSize) const =0
unsigned getKernArgSegmentSize(const Function &F, Align &MaxAlign) const
bool hasTrue16BitInsts() const
Return true if the subtarget supports True16 instructions.
AMDGPUDwarfFlavour getAMDGPUDwarfFlavour() const
unsigned getMaxLocalMemSizeWithWaveCount(unsigned WaveCount, const Function &) const
Return the amount of LDS that can be used that will not restrict the occupancy lower than WaveCount.
virtual unsigned getMaxFlatWorkGroupSize() const =0
unsigned getExplicitKernelArgOffset() const
Returns the offset in bytes from the start of the input buffer of the first explicit kernel argument.
unsigned getMaxWavesPerEU() const
uint64_t getExplicitKernArgSize(const Function &F, Align &MaxAlign) const
std::pair< unsigned, unsigned > getEffectiveWavesPerEU(std::pair< unsigned, unsigned > WavesPerEU, std::pair< unsigned, unsigned > FlatWorkGroupSizes) const
bool isSingleLaneExecution(const Function &Kernel) const
Return true if only a single workitem can be active in a wave.
static const AMDGPUSubtarget & get(const MachineFunction &MF)
unsigned getWavefrontSize() const
virtual unsigned getMinFlatWorkGroupSize() const =0
Class for arbitrary precision integers.
Definition: APInt.h:78
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
This class represents a range of values.
Definition: ConstantRange.h:47
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition: Value.h:565
MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
Definition: MDBuilder.cpp:95
Metadata node.
Definition: Metadata.h:1069
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
const Triple & getTargetTriple() const
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition: Triple.h:383
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM_READNONE bool isKernel(CallingConv::ID CC)
unsigned getAMDHSACodeObjectVersion(const Module &M)
bool isShader(CallingConv::ID cc)
SmallVector< unsigned > getIntegerVecAttribute(const Function &F, StringRef Name, unsigned Size, unsigned DefaultVal)
std::pair< unsigned, unsigned > getIntegerPairAttribute(const Function &F, StringRef Name, std::pair< unsigned, unsigned > Default, bool OnlyFirstRequired)
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
Definition: CallingConv.h:188
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
Definition: CallingConv.h:200
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
Definition: CallingConv.h:206
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
Definition: CallingConv.h:191
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
Definition: CallingConv.h:194
@ SPIR_KERNEL
Used for SPIR kernel functions.
Definition: CallingConv.h:144
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
Definition: CallingConv.h:218
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
Definition: CallingConv.h:213
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:403
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
@ Default
The result values are uniform if and only if all operands are uniform.
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39