LLVM 20.0.0git
AMDGPULibCalls.cpp
Go to the documentation of this file.
1//===- AMDGPULibCalls.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file does AMD library function optimizations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
15#include "AMDGPULibFunc.h"
16#include "GCNSubtarget.h"
21#include "llvm/IR/Dominators.h"
22#include "llvm/IR/IRBuilder.h"
23#include "llvm/IR/MDBuilder.h"
25#include <cmath>
26
27#define DEBUG_TYPE "amdgpu-simplifylib"
28
29using namespace llvm;
30using namespace llvm::PatternMatch;
31
32static cl::opt<bool> EnablePreLink("amdgpu-prelink",
33 cl::desc("Enable pre-link mode optimizations"),
34 cl::init(false),
36
37static cl::list<std::string> UseNative("amdgpu-use-native",
38 cl::desc("Comma separated list of functions to replace with native, or all"),
41
42#define MATH_PI numbers::pi
43#define MATH_E numbers::e
44#define MATH_SQRT2 numbers::sqrt2
45#define MATH_SQRT1_2 numbers::inv_sqrt2
46
47namespace llvm {
48
50private:
51 const TargetLibraryInfo *TLInfo = nullptr;
52 AssumptionCache *AC = nullptr;
53 DominatorTree *DT = nullptr;
54
56
57 bool UnsafeFPMath = false;
58
59 // -fuse-native.
60 bool AllNative = false;
61
62 bool useNativeFunc(const StringRef F) const;
63
64 // Return a pointer (pointer expr) to the function if function definition with
65 // "FuncName" exists. It may create a new function prototype in pre-link mode.
66 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
67
68 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
69
70 bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
71
72 /* Specialized optimizations */
73
74 // pow/powr/pown
75 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
76
77 // rootn
78 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
79
80 // -fuse-native for sincos
81 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
82
83 // evaluate calls if calls' arguments are constants.
84 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1,
85 Constant *copr0, Constant *copr1);
86 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
87
88 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value
89 /// of cos, sincos call).
90 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg,
91 FastMathFlags FMF,
93 FunctionCallee Fsincos);
94
95 // sin/cos
96 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
97
98 // __read_pipe/__write_pipe
99 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
100 const FuncInfo &FInfo);
101
102 // Get a scalar native builtin single argument FP function
103 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
104
105 /// Substitute a call to a known libcall with an intrinsic call. If \p
106 /// AllowMinSize is true, allow the replacement in a minsize function.
107 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
108 bool AllowMinSizeF32 = false,
109 bool AllowF64 = false,
110 bool AllowStrictFP = false);
111 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
112 Intrinsic::ID IntrID);
113
114 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
115 Intrinsic::ID IntrID,
116 bool AllowMinSizeF32 = false,
117 bool AllowF64 = false,
118 bool AllowStrictFP = false);
119
120protected:
121 bool isUnsafeMath(const FPMathOperator *FPOp) const;
122 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const;
123
125
126 static void replaceCall(Instruction *I, Value *With) {
127 I->replaceAllUsesWith(With);
128 I->eraseFromParent();
129 }
130
131 static void replaceCall(FPMathOperator *I, Value *With) {
132 replaceCall(cast<Instruction>(I), With);
133 }
134
135public:
136 AMDGPULibCalls() = default;
137
138 bool fold(CallInst *CI);
139
141 void initNativeFuncs();
142
143 // Replace a normal math function call with that native version
144 bool useNative(CallInst *CI);
145};
146
147} // end namespace llvm
148
149template <typename IRB>
150static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
151 const Twine &Name = "") {
152 CallInst *R = B.CreateCall(Callee, Arg, Name);
153 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
154 R->setCallingConv(F->getCallingConv());
155 return R;
156}
157
158template <typename IRB>
159static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
160 Value *Arg2, const Twine &Name = "") {
161 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
162 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
163 R->setCallingConv(F->getCallingConv());
164 return R;
165}
166
168 Type *PowNExpTy = Type::getInt32Ty(FT->getContext());
169 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType()))
170 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount());
171
172 return FunctionType::get(FT->getReturnType(),
173 {FT->getParamType(0), PowNExpTy}, false);
174}
175
176// Data structures for table-driven optimizations.
177// FuncTbl works for both f32 and f64 functions with 1 input argument
178
180 double result;
181 double input;
182};
183
184/* a list of {result, input} */
185static const TableEntry tbl_acos[] = {
186 {MATH_PI / 2.0, 0.0},
187 {MATH_PI / 2.0, -0.0},
188 {0.0, 1.0},
189 {MATH_PI, -1.0}
190};
191static const TableEntry tbl_acosh[] = {
192 {0.0, 1.0}
193};
194static const TableEntry tbl_acospi[] = {
195 {0.5, 0.0},
196 {0.5, -0.0},
197 {0.0, 1.0},
198 {1.0, -1.0}
199};
200static const TableEntry tbl_asin[] = {
201 {0.0, 0.0},
202 {-0.0, -0.0},
203 {MATH_PI / 2.0, 1.0},
204 {-MATH_PI / 2.0, -1.0}
205};
206static const TableEntry tbl_asinh[] = {
207 {0.0, 0.0},
208 {-0.0, -0.0}
209};
210static const TableEntry tbl_asinpi[] = {
211 {0.0, 0.0},
212 {-0.0, -0.0},
213 {0.5, 1.0},
214 {-0.5, -1.0}
215};
216static const TableEntry tbl_atan[] = {
217 {0.0, 0.0},
218 {-0.0, -0.0},
219 {MATH_PI / 4.0, 1.0},
220 {-MATH_PI / 4.0, -1.0}
221};
222static const TableEntry tbl_atanh[] = {
223 {0.0, 0.0},
224 {-0.0, -0.0}
225};
226static const TableEntry tbl_atanpi[] = {
227 {0.0, 0.0},
228 {-0.0, -0.0},
229 {0.25, 1.0},
230 {-0.25, -1.0}
231};
232static const TableEntry tbl_cbrt[] = {
233 {0.0, 0.0},
234 {-0.0, -0.0},
235 {1.0, 1.0},
236 {-1.0, -1.0},
237};
238static const TableEntry tbl_cos[] = {
239 {1.0, 0.0},
240 {1.0, -0.0}
241};
242static const TableEntry tbl_cosh[] = {
243 {1.0, 0.0},
244 {1.0, -0.0}
245};
246static const TableEntry tbl_cospi[] = {
247 {1.0, 0.0},
248 {1.0, -0.0}
249};
250static const TableEntry tbl_erfc[] = {
251 {1.0, 0.0},
252 {1.0, -0.0}
253};
254static const TableEntry tbl_erf[] = {
255 {0.0, 0.0},
256 {-0.0, -0.0}
257};
258static const TableEntry tbl_exp[] = {
259 {1.0, 0.0},
260 {1.0, -0.0},
261 {MATH_E, 1.0}
262};
263static const TableEntry tbl_exp2[] = {
264 {1.0, 0.0},
265 {1.0, -0.0},
266 {2.0, 1.0}
267};
268static const TableEntry tbl_exp10[] = {
269 {1.0, 0.0},
270 {1.0, -0.0},
271 {10.0, 1.0}
272};
273static const TableEntry tbl_expm1[] = {
274 {0.0, 0.0},
275 {-0.0, -0.0}
276};
277static const TableEntry tbl_log[] = {
278 {0.0, 1.0},
279 {1.0, MATH_E}
280};
281static const TableEntry tbl_log2[] = {
282 {0.0, 1.0},
283 {1.0, 2.0}
284};
285static const TableEntry tbl_log10[] = {
286 {0.0, 1.0},
287 {1.0, 10.0}
288};
289static const TableEntry tbl_rsqrt[] = {
290 {1.0, 1.0},
291 {MATH_SQRT1_2, 2.0}
292};
293static const TableEntry tbl_sin[] = {
294 {0.0, 0.0},
295 {-0.0, -0.0}
296};
297static const TableEntry tbl_sinh[] = {
298 {0.0, 0.0},
299 {-0.0, -0.0}
300};
301static const TableEntry tbl_sinpi[] = {
302 {0.0, 0.0},
303 {-0.0, -0.0}
304};
305static const TableEntry tbl_sqrt[] = {
306 {0.0, 0.0},
307 {1.0, 1.0},
308 {MATH_SQRT2, 2.0}
309};
310static const TableEntry tbl_tan[] = {
311 {0.0, 0.0},
312 {-0.0, -0.0}
313};
314static const TableEntry tbl_tanh[] = {
315 {0.0, 0.0},
316 {-0.0, -0.0}
317};
318static const TableEntry tbl_tanpi[] = {
319 {0.0, 0.0},
320 {-0.0, -0.0}
321};
322static const TableEntry tbl_tgamma[] = {
323 {1.0, 1.0},
324 {1.0, 2.0},
325 {2.0, 3.0},
326 {6.0, 4.0}
327};
328
330 switch(id) {
331 case AMDGPULibFunc::EI_DIVIDE:
332 case AMDGPULibFunc::EI_COS:
333 case AMDGPULibFunc::EI_EXP:
334 case AMDGPULibFunc::EI_EXP2:
335 case AMDGPULibFunc::EI_EXP10:
336 case AMDGPULibFunc::EI_LOG:
337 case AMDGPULibFunc::EI_LOG2:
338 case AMDGPULibFunc::EI_LOG10:
339 case AMDGPULibFunc::EI_POWR:
340 case AMDGPULibFunc::EI_RECIP:
341 case AMDGPULibFunc::EI_RSQRT:
342 case AMDGPULibFunc::EI_SIN:
343 case AMDGPULibFunc::EI_SINCOS:
344 case AMDGPULibFunc::EI_SQRT:
345 case AMDGPULibFunc::EI_TAN:
346 return true;
347 default:;
348 }
349 return false;
350}
351
353
355 switch(id) {
356 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
357 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
358 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
359 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
360 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
361 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
362 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
363 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
364 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
365 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
366 case AMDGPULibFunc::EI_NCOS:
367 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
368 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
369 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
370 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
371 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
372 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
373 case AMDGPULibFunc::EI_NEXP2:
374 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
375 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
376 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
377 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
378 case AMDGPULibFunc::EI_NLOG2:
379 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
380 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
381 case AMDGPULibFunc::EI_NRSQRT:
382 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
383 case AMDGPULibFunc::EI_NSIN:
384 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
385 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
386 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
387 case AMDGPULibFunc::EI_NSQRT:
388 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
389 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
390 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
391 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
392 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
393 default:;
394 }
395 return TableRef();
396}
397
398static inline int getVecSize(const AMDGPULibFunc& FInfo) {
399 return FInfo.getLeads()[0].VectorSize;
400}
401
402static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
403 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
404}
405
406FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
407 // If we are doing PreLinkOpt, the function is external. So it is safe to
408 // use getOrInsertFunction() at this stage.
409
411 : AMDGPULibFunc::getFunction(M, fInfo);
412}
413
414bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
415 FuncInfo &FInfo) {
416 return AMDGPULibFunc::parse(FMangledName, FInfo);
417}
418
420 return UnsafeFPMath || FPOp->isFast();
421}
422
424 return UnsafeFPMath ||
425 (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs());
426}
427
429 const FPMathOperator *FPOp) const {
430 // TODO: Refine to approxFunc or contract
431 return isUnsafeMath(FPOp);
432}
433
435 UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool();
439}
440
441bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
442 return AllNative || llvm::is_contained(UseNative, F);
443}
444
446 AllNative = useNativeFunc("all") ||
447 (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
448 UseNative.begin()->empty());
449}
450
451bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
452 bool native_sin = useNativeFunc("sin");
453 bool native_cos = useNativeFunc("cos");
454
455 if (native_sin && native_cos) {
456 Module *M = aCI->getModule();
457 Value *opr0 = aCI->getArgOperand(0);
458
459 AMDGPULibFunc nf;
460 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
461 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
462
465 FunctionCallee sinExpr = getFunction(M, nf);
466
469 FunctionCallee cosExpr = getFunction(M, nf);
470 if (sinExpr && cosExpr) {
471 Value *sinval =
472 CallInst::Create(sinExpr, opr0, "splitsin", aCI->getIterator());
473 Value *cosval =
474 CallInst::Create(cosExpr, opr0, "splitcos", aCI->getIterator());
475 new StoreInst(cosval, aCI->getArgOperand(1), aCI->getIterator());
476
477 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
478 << " with native version of sin/cos");
479
480 replaceCall(aCI, sinval);
481 return true;
482 }
483 }
484 return false;
485}
486
488 Function *Callee = aCI->getCalledFunction();
489 if (!Callee || aCI->isNoBuiltin())
490 return false;
491
492 FuncInfo FInfo;
493 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
494 FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
495 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
496 !(AllNative || useNativeFunc(FInfo.getName()))) {
497 return false;
498 }
499
500 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
501 return sincosUseNative(aCI, FInfo);
502
504 FunctionCallee F = getFunction(aCI->getModule(), FInfo);
505 if (!F)
506 return false;
507
508 aCI->setCalledFunction(F);
509 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
510 << " with native version");
511 return true;
512}
513
514// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
515// builtin, with appended type size and alignment arguments, where 2 or 4
516// indicates the original number of arguments. The library has optimized version
517// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
518// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
519// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
520// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
521bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
522 const FuncInfo &FInfo) {
523 auto *Callee = CI->getCalledFunction();
524 if (!Callee->isDeclaration())
525 return false;
526
527 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
528 auto *M = Callee->getParent();
529 std::string Name = std::string(Callee->getName());
530 auto NumArg = CI->arg_size();
531 if (NumArg != 4 && NumArg != 6)
532 return false;
533 ConstantInt *PacketSize =
534 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2));
535 ConstantInt *PacketAlign =
536 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1));
537 if (!PacketSize || !PacketAlign)
538 return false;
539
540 unsigned Size = PacketSize->getZExtValue();
541 Align Alignment = PacketAlign->getAlignValue();
542 if (Alignment != Size)
543 return false;
544
545 unsigned PtrArgLoc = CI->arg_size() - 3;
546 Value *PtrArg = CI->getArgOperand(PtrArgLoc);
547 Type *PtrTy = PtrArg->getType();
548
550 for (unsigned I = 0; I != PtrArgLoc; ++I)
551 ArgTys.push_back(CI->getArgOperand(I)->getType());
552 ArgTys.push_back(PtrTy);
553
554 Name = Name + "_" + std::to_string(Size);
555 auto *FTy = FunctionType::get(Callee->getReturnType(),
556 ArrayRef<Type *>(ArgTys), false);
557 AMDGPULibFunc NewLibFunc(Name, FTy);
559 if (!F)
560 return false;
561
563 for (unsigned I = 0; I != PtrArgLoc; ++I)
564 Args.push_back(CI->getArgOperand(I));
565 Args.push_back(PtrArg);
566
567 auto *NCI = B.CreateCall(F, Args);
568 NCI->setAttributes(CI->getAttributes());
569 CI->replaceAllUsesWith(NCI);
570 CI->dropAllReferences();
571 CI->eraseFromParent();
572
573 return true;
574}
575
576static bool isKnownIntegral(const Value *V, const DataLayout &DL,
577 FastMathFlags FMF) {
578 if (isa<PoisonValue>(V))
579 return true;
580 if (isa<UndefValue>(V))
581 return false;
582
583 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
584 return CF->getValueAPF().isInteger();
585
586 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
587 const Constant *CV = dyn_cast<Constant>(V);
588 if (VFVTy && CV) {
589 unsigned NumElts = VFVTy->getNumElements();
590 for (unsigned i = 0; i != NumElts; ++i) {
591 Constant *Elt = CV->getAggregateElement(i);
592 if (!Elt)
593 return false;
594 if (isa<PoisonValue>(Elt))
595 continue;
596
597 const ConstantFP *CFP = dyn_cast<ConstantFP>(Elt);
598 if (!CFP || !CFP->getValue().isInteger())
599 return false;
600 }
601
602 return true;
603 }
604
605 const Instruction *I = dyn_cast<Instruction>(V);
606 if (!I)
607 return false;
608
609 switch (I->getOpcode()) {
610 case Instruction::SIToFP:
611 case Instruction::UIToFP:
612 // TODO: Could check nofpclass(inf) on incoming argument
613 if (FMF.noInfs())
614 return true;
615
616 // Need to check int size cannot produce infinity, which computeKnownFPClass
617 // knows how to do already.
618 return isKnownNeverInfinity(I, /*Depth=*/0, SimplifyQuery(DL));
619 case Instruction::Call: {
620 const CallInst *CI = cast<CallInst>(I);
621 switch (CI->getIntrinsicID()) {
622 case Intrinsic::trunc:
623 case Intrinsic::floor:
624 case Intrinsic::ceil:
625 case Intrinsic::rint:
626 case Intrinsic::nearbyint:
627 case Intrinsic::round:
628 case Intrinsic::roundeven:
629 return (FMF.noInfs() && FMF.noNaNs()) ||
630 isKnownNeverInfOrNaN(I, /*Depth=*/0, SimplifyQuery(DL));
631 default:
632 break;
633 }
634
635 break;
636 }
637 default:
638 break;
639 }
640
641 return false;
642}
643
644// This function returns false if no change; return true otherwise.
646 Function *Callee = CI->getCalledFunction();
647 // Ignore indirect calls.
648 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin())
649 return false;
650
651 FuncInfo FInfo;
652 if (!parseFunctionName(Callee->getName(), FInfo))
653 return false;
654
655 // Further check the number of arguments to see if they match.
656 // TODO: Check calling convention matches too
657 if (!FInfo.isCompatibleSignature(*Callee->getParent(), CI->getFunctionType()))
658 return false;
659
660 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n');
661
662 if (TDOFold(CI, FInfo))
663 return true;
664
665 IRBuilder<> B(CI);
666 if (CI->isStrictFP())
667 B.setIsFPConstrained(true);
668
669 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) {
670 // Under unsafe-math, evaluate calls if possible.
671 // According to Brian Sumner, we can do this for all f32 function calls
672 // using host's double function calls.
673 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo))
674 return true;
675
676 // Copy fast flags from the original call.
677 FastMathFlags FMF = FPOp->getFastMathFlags();
678 B.setFastMathFlags(FMF);
679
680 // Specialized optimizations for each function call.
681 //
682 // TODO: Handle native functions
683 switch (FInfo.getId()) {
685 if (FMF.none())
686 return false;
687 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp,
688 FMF.approxFunc());
690 if (FMF.none())
691 return false;
692 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2,
693 FMF.approxFunc());
695 if (FMF.none())
696 return false;
697 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log,
698 FMF.approxFunc());
700 if (FMF.none())
701 return false;
702 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2,
703 FMF.approxFunc());
705 if (FMF.none())
706 return false;
707 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10,
708 FMF.approxFunc());
710 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum,
711 true, true);
713 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum,
714 true, true);
716 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true,
717 true);
719 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd,
720 true, true);
722 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true,
723 true, true);
725 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign,
726 true, true, true);
728 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true,
729 true);
731 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true,
732 true);
734 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true,
735 true);
737 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true,
738 true);
740 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true,
741 true);
743 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true))
744 return false;
745
746 Value *Arg1 = CI->getArgOperand(1);
747 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType());
748 VecTy && !isa<VectorType>(Arg1->getType())) {
749 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1);
750 CI->setArgOperand(1, SplatArg1);
751 }
752
754 CI->getModule(), Intrinsic::ldexp,
755 {CI->getType(), CI->getArgOperand(1)->getType()}));
756 return true;
757 }
759 Module *M = Callee->getParent();
760 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo);
761 FunctionCallee PowrFunc = getFunction(M, PowrInfo);
762 CallInst *Call = cast<CallInst>(FPOp);
763
764 // pow(x, y) -> powr(x, y) for x >= -0.0
765 // TODO: Account for flags on current call
766 if (PowrFunc &&
768 FPOp->getOperand(0), /*Depth=*/0,
769 SimplifyQuery(M->getDataLayout(), TLInfo, DT, AC, Call))) {
770 Call->setCalledFunction(PowrFunc);
771 return fold_pow(FPOp, B, PowrInfo) || true;
772 }
773
774 // pow(x, y) -> pown(x, y) for known integral y
775 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(),
776 FPOp->getFastMathFlags())) {
777 FunctionType *PownType = getPownType(CI->getFunctionType());
778 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true);
779 FunctionCallee PownFunc = getFunction(M, PownInfo);
780 if (PownFunc) {
781 // TODO: If the incoming integral value is an sitofp/uitofp, it won't
782 // fold out without a known range. We can probably take the source
783 // value directly.
784 Value *CastedArg =
785 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1));
786 // Have to drop any nofpclass attributes on the original call site.
787 Call->removeParamAttrs(
789 Call->getParamAttributes(1)));
790 Call->setCalledFunction(PownFunc);
791 Call->setArgOperand(1, CastedArg);
792 return fold_pow(FPOp, B, PownInfo) || true;
793 }
794 }
795
796 return fold_pow(FPOp, B, FInfo);
797 }
800 return fold_pow(FPOp, B, FInfo);
802 return fold_rootn(FPOp, B, FInfo);
804 // TODO: Allow with strictfp + constrained intrinsic
805 return tryReplaceLibcallWithSimpleIntrinsic(
806 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false);
809 return fold_sincos(FPOp, B, FInfo);
810 default:
811 break;
812 }
813 } else {
814 // Specialized optimizations for each function call
815 switch (FInfo.getId()) {
820 return fold_read_write_pipe(CI, B, FInfo);
821 default:
822 break;
823 }
824 }
825
826 return false;
827}
828
829bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
830 // Table-Driven optimization
831 const TableRef tr = getOptTable(FInfo.getId());
832 if (tr.empty())
833 return false;
834
835 int const sz = (int)tr.size();
836 Value *opr0 = CI->getArgOperand(0);
837
838 if (getVecSize(FInfo) > 1) {
839 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
841 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
842 ConstantFP *eltval = dyn_cast<ConstantFP>(
843 CV->getElementAsConstant((unsigned)eltNo));
844 assert(eltval && "Non-FP arguments in math function!");
845 bool found = false;
846 for (int i=0; i < sz; ++i) {
847 if (eltval->isExactlyValue(tr[i].input)) {
848 DVal.push_back(tr[i].result);
849 found = true;
850 break;
851 }
852 }
853 if (!found) {
854 // This vector constants not handled yet.
855 return false;
856 }
857 }
858 LLVMContext &context = CI->getParent()->getParent()->getContext();
859 Constant *nval;
860 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
862 for (double D : DVal)
863 FVal.push_back((float)D);
864 ArrayRef<float> tmp(FVal);
865 nval = ConstantDataVector::get(context, tmp);
866 } else { // F64
867 ArrayRef<double> tmp(DVal);
868 nval = ConstantDataVector::get(context, tmp);
869 }
870 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
871 replaceCall(CI, nval);
872 return true;
873 }
874 } else {
875 // Scalar version
876 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
877 for (int i = 0; i < sz; ++i) {
878 if (CF->isExactlyValue(tr[i].input)) {
879 Value *nval = ConstantFP::get(CF->getType(), tr[i].result);
880 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
881 replaceCall(CI, nval);
882 return true;
883 }
884 }
885 }
886 }
887
888 return false;
889}
890
891namespace llvm {
892static double log2(double V) {
893#if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
894 return ::log2(V);
895#else
896 return log(V) / numbers::ln2;
897#endif
898}
899} // namespace llvm
900
901bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B,
902 const FuncInfo &FInfo) {
903 assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
904 FInfo.getId() == AMDGPULibFunc::EI_POWR ||
905 FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
906 "fold_pow: encounter a wrong function call");
907
908 Module *M = B.GetInsertBlock()->getModule();
909 Type *eltType = FPOp->getType()->getScalarType();
910 Value *opr0 = FPOp->getOperand(0);
911 Value *opr1 = FPOp->getOperand(1);
912
913 const APFloat *CF = nullptr;
914 const APInt *CINT = nullptr;
915 if (!match(opr1, m_APFloatAllowPoison(CF)))
916 match(opr1, m_APIntAllowPoison(CINT));
917
918 // 0x1111111 means that we don't do anything for this call.
919 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
920
921 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) {
922 // pow/powr/pown(x, 0) == 1
923 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n");
924 Constant *cnval = ConstantFP::get(eltType, 1.0);
925 if (getVecSize(FInfo) > 1) {
926 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
927 }
928 replaceCall(FPOp, cnval);
929 return true;
930 }
931 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
932 // pow/powr/pown(x, 1.0) = x
933 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n");
934 replaceCall(FPOp, opr0);
935 return true;
936 }
937 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
938 // pow/powr/pown(x, 2.0) = x*x
939 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * "
940 << *opr0 << "\n");
941 Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
942 replaceCall(FPOp, nval);
943 return true;
944 }
945 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
946 // pow/powr/pown(x, -1.0) = 1.0/x
947 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n");
948 Constant *cnval = ConstantFP::get(eltType, 1.0);
949 if (getVecSize(FInfo) > 1) {
950 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
951 }
952 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
953 replaceCall(FPOp, nval);
954 return true;
955 }
956
957 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
958 // pow[r](x, [-]0.5) = sqrt(x)
959 bool issqrt = CF->isExactlyValue(0.5);
960 if (FunctionCallee FPExpr =
961 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
963 FInfo))) {
964 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName()
965 << '(' << *opr0 << ")\n");
966 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
967 : "__pow2rsqrt");
968 replaceCall(FPOp, nval);
969 return true;
970 }
971 }
972
973 if (!isUnsafeFiniteOnlyMath(FPOp))
974 return false;
975
976 // Unsafe Math optimization
977
978 // Remember that ci_opr1 is set if opr1 is integral
979 if (CF) {
980 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
981 ? (double)CF->convertToFloat()
982 : CF->convertToDouble();
983 int ival = (int)dval;
984 if ((double)ival == dval) {
985 ci_opr1 = ival;
986 } else
987 ci_opr1 = 0x11111111;
988 }
989
990 // pow/powr/pown(x, c) = [1/](x*x*..x); where
991 // trunc(c) == c && the number of x == c && |c| <= 12
992 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
993 if (abs_opr1 <= 12) {
994 Constant *cnval;
995 Value *nval;
996 if (abs_opr1 == 0) {
997 cnval = ConstantFP::get(eltType, 1.0);
998 if (getVecSize(FInfo) > 1) {
999 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1000 }
1001 nval = cnval;
1002 } else {
1003 Value *valx2 = nullptr;
1004 nval = nullptr;
1005 while (abs_opr1 > 0) {
1006 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
1007 if (abs_opr1 & 1) {
1008 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
1009 }
1010 abs_opr1 >>= 1;
1011 }
1012 }
1013
1014 if (ci_opr1 < 0) {
1015 cnval = ConstantFP::get(eltType, 1.0);
1016 if (getVecSize(FInfo) > 1) {
1017 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1018 }
1019 nval = B.CreateFDiv(cnval, nval, "__1powprod");
1020 }
1021 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1022 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1023 << ")\n");
1024 replaceCall(FPOp, nval);
1025 return true;
1026 }
1027
1028 // If we should use the generic intrinsic instead of emitting a libcall
1029 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy();
1030
1031 // powr ---> exp2(y * log2(x))
1032 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1033 FunctionCallee ExpExpr;
1034 if (ShouldUseIntrinsic)
1035 ExpExpr = Intrinsic::getOrInsertDeclaration(M, Intrinsic::exp2,
1036 {FPOp->getType()});
1037 else {
1038 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1039 if (!ExpExpr)
1040 return false;
1041 }
1042
1043 bool needlog = false;
1044 bool needabs = false;
1045 bool needcopysign = false;
1046 Constant *cnval = nullptr;
1047 if (getVecSize(FInfo) == 1) {
1048 CF = nullptr;
1049 match(opr0, m_APFloatAllowPoison(CF));
1050
1051 if (CF) {
1052 double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1053 ? (double)CF->convertToFloat()
1054 : CF->convertToDouble();
1055
1056 V = log2(std::abs(V));
1057 cnval = ConstantFP::get(eltType, V);
1058 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1059 CF->isNegative();
1060 } else {
1061 needlog = true;
1062 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1063 }
1064 } else {
1065 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1066
1067 if (!CDV) {
1068 needlog = true;
1069 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1070 } else {
1071 assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1072 "Wrong vector size detected");
1073
1075 for (int i=0; i < getVecSize(FInfo); ++i) {
1076 double V = CDV->getElementAsAPFloat(i).convertToDouble();
1077 if (V < 0.0) needcopysign = true;
1078 V = log2(std::abs(V));
1079 DVal.push_back(V);
1080 }
1081 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1083 for (double D : DVal)
1084 FVal.push_back((float)D);
1085 ArrayRef<float> tmp(FVal);
1086 cnval = ConstantDataVector::get(M->getContext(), tmp);
1087 } else {
1088 ArrayRef<double> tmp(DVal);
1089 cnval = ConstantDataVector::get(M->getContext(), tmp);
1090 }
1091 }
1092 }
1093
1094 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1095 // We cannot handle corner cases for a general pow() function, give up
1096 // unless y is a constant integral value. Then proceed as if it were pown.
1097 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags()))
1098 return false;
1099 }
1100
1101 Value *nval;
1102 if (needabs) {
1103 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs");
1104 } else {
1105 nval = cnval ? cnval : opr0;
1106 }
1107 if (needlog) {
1108 FunctionCallee LogExpr;
1109 if (ShouldUseIntrinsic) {
1110 LogExpr = Intrinsic::getOrInsertDeclaration(M, Intrinsic::log2,
1111 {FPOp->getType()});
1112 } else {
1113 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1114 if (!LogExpr)
1115 return false;
1116 }
1117
1118 nval = CreateCallEx(B,LogExpr, nval, "__log2");
1119 }
1120
1121 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1122 // convert int(32) to fp(f32 or f64)
1123 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1124 }
1125 nval = B.CreateFMul(opr1, nval, "__ylogx");
1126 nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1127
1128 if (needcopysign) {
1129 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits());
1130 Type *nTy = FPOp->getType()->getWithNewType(nTyS);
1131 unsigned size = nTy->getScalarSizeInBits();
1132 Value *opr_n = FPOp->getOperand(1);
1133 if (opr_n->getType()->getScalarType()->isIntegerTy())
1134 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou");
1135 else
1136 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1137
1138 Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1139 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1140 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1141 nval = B.CreateBitCast(nval, opr0->getType());
1142 }
1143
1144 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1145 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1146 replaceCall(FPOp, nval);
1147
1148 return true;
1149}
1150
1151bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B,
1152 const FuncInfo &FInfo) {
1153 Value *opr0 = FPOp->getOperand(0);
1154 Value *opr1 = FPOp->getOperand(1);
1155
1156 const APInt *CINT = nullptr;
1157 if (!match(opr1, m_APIntAllowPoison(CINT)))
1158 return false;
1159
1160 Function *Parent = B.GetInsertBlock()->getParent();
1161
1162 int ci_opr1 = (int)CINT->getSExtValue();
1163 if (ci_opr1 == 1 && !Parent->hasFnAttribute(Attribute::StrictFP)) {
1164 // rootn(x, 1) = x
1165 //
1166 // TODO: Insert constrained canonicalize for strictfp case.
1167 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << '\n');
1168 replaceCall(FPOp, opr0);
1169 return true;
1170 }
1171
1172 Module *M = B.GetInsertBlock()->getModule();
1173
1174 CallInst *CI = cast<CallInst>(FPOp);
1175 if (ci_opr1 == 2 &&
1176 shouldReplaceLibcallWithIntrinsic(CI,
1177 /*AllowMinSizeF32=*/true,
1178 /*AllowF64=*/true)) {
1179 // rootn(x, 2) = sqrt(x)
1180 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 << ")\n");
1181
1182 CallInst *NewCall = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1183 NewCall->takeName(CI);
1184
1185 // OpenCL rootn has a looser ulp of 2 requirement than sqrt, so add some
1186 // metadata.
1187 MDBuilder MDHelper(M->getContext());
1188 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1189 NewCall->setMetadata(LLVMContext::MD_fpmath, FPMD);
1190
1191 replaceCall(CI, NewCall);
1192 return true;
1193 }
1194
1195 if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1196 if (FunctionCallee FPExpr =
1197 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1198 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0
1199 << ")\n");
1200 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1201 replaceCall(FPOp, nval);
1202 return true;
1203 }
1204 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1205 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n");
1206 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1207 opr0,
1208 "__rootn2div");
1209 replaceCall(FPOp, nval);
1210 return true;
1211 }
1212
1213 if (ci_opr1 == -2 &&
1214 shouldReplaceLibcallWithIntrinsic(CI,
1215 /*AllowMinSizeF32=*/true,
1216 /*AllowF64=*/true)) {
1217 // rootn(x, -2) = rsqrt(x)
1218
1219 // The original rootn had looser ulp requirements than the resultant sqrt
1220 // and fdiv.
1221 MDBuilder MDHelper(M->getContext());
1222 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1223
1224 // TODO: Could handle strictfp but need to fix strict sqrt emission
1225 FastMathFlags FMF = FPOp->getFastMathFlags();
1226 FMF.setAllowContract(true);
1227
1228 CallInst *Sqrt = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1229 Instruction *RSqrt = cast<Instruction>(
1230 B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), Sqrt));
1231 Sqrt->setFastMathFlags(FMF);
1232 RSqrt->setFastMathFlags(FMF);
1233 RSqrt->setMetadata(LLVMContext::MD_fpmath, FPMD);
1234
1235 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0
1236 << ")\n");
1237 replaceCall(CI, RSqrt);
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
1244// Get a scalar native builtin single argument FP function
1245FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1246 const FuncInfo &FInfo) {
1247 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1248 return nullptr;
1249 FuncInfo nf = FInfo;
1251 return getFunction(M, nf);
1252}
1253
1254// Some library calls are just wrappers around llvm intrinsics, but compiled
1255// conservatively. Preserve the flags from the original call site by
1256// substituting them with direct calls with all the flags.
1257bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
1258 bool AllowMinSizeF32,
1259 bool AllowF64,
1260 bool AllowStrictFP) {
1261 Type *FltTy = CI->getType()->getScalarType();
1262 const bool IsF32 = FltTy->isFloatTy();
1263
1264 // f64 intrinsics aren't implemented for most operations.
1265 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy()))
1266 return false;
1267
1268 // We're implicitly inlining by replacing the libcall with the intrinsic, so
1269 // don't do it for noinline call sites.
1270 if (CI->isNoInline())
1271 return false;
1272
1273 const Function *ParentF = CI->getFunction();
1274 // TODO: Handle strictfp
1275 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP))
1276 return false;
1277
1278 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize())
1279 return false;
1280 return true;
1281}
1282
1283void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B,
1284 CallInst *CI,
1285 Intrinsic::ID IntrID) {
1286 if (CI->arg_size() == 2) {
1287 Value *Arg0 = CI->getArgOperand(0);
1288 Value *Arg1 = CI->getArgOperand(1);
1289 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType());
1290 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType());
1291 if (Arg0VecTy && !Arg1VecTy) {
1292 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1);
1293 CI->setArgOperand(1, SplatRHS);
1294 } else if (!Arg0VecTy && Arg1VecTy) {
1295 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0);
1296 CI->setArgOperand(0, SplatLHS);
1297 }
1298 }
1299
1301 CI->getModule(), IntrID, {CI->getType()}));
1302}
1303
1304bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic(
1305 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32,
1306 bool AllowF64, bool AllowStrictFP) {
1307 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64,
1308 AllowStrictFP))
1309 return false;
1310 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID);
1311 return true;
1312}
1313
1314std::tuple<Value *, Value *, Value *>
1315AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B,
1316 FunctionCallee Fsincos) {
1317 DebugLoc DL = B.getCurrentDebugLocation();
1318 Function *F = B.GetInsertBlock()->getParent();
1319 B.SetInsertPointPastAllocas(F);
1320
1321 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_");
1322
1323 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1324 // If the argument is an instruction, it must dominate all uses so put our
1325 // sincos call there. Otherwise, right after the allocas works well enough
1326 // if it's an argument or constant.
1327
1328 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1329
1330 // SetInsertPoint unwelcomely always tries to set the debug loc.
1331 B.SetCurrentDebugLocation(DL);
1332 }
1333
1334 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1);
1335
1336 // The allocaInst allocates the memory in private address space. This need
1337 // to be addrspacecasted to point to the address space of cos pointer type.
1338 // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1339 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy);
1340
1341 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc);
1342
1343 // TODO: Is it worth trying to preserve the location for the cos calls for the
1344 // load?
1345
1346 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1347 return {SinCos, LoadCos, SinCos};
1348}
1349
1350// fold sin, cos -> sincos.
1351bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B,
1352 const FuncInfo &fInfo) {
1353 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1354 fInfo.getId() == AMDGPULibFunc::EI_COS);
1355
1356 if ((getArgType(fInfo) != AMDGPULibFunc::F32 &&
1357 getArgType(fInfo) != AMDGPULibFunc::F64) ||
1358 fInfo.getPrefix() != AMDGPULibFunc::NOPFX)
1359 return false;
1360
1361 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1362
1363 Value *CArgVal = FPOp->getOperand(0);
1364 CallInst *CI = cast<CallInst>(FPOp);
1365
1366 Function *F = B.GetInsertBlock()->getParent();
1367 Module *M = F->getParent();
1368
1369 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer
1370 // implementation. Prefer the private form if available.
1371 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo);
1372 SinCosLibFuncPrivate.getLeads()[0].PtrKind =
1374
1375 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo);
1376 SinCosLibFuncGeneric.getLeads()[0].PtrKind =
1378
1379 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate);
1380 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric);
1381 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric;
1382 if (!FSinCos)
1383 return false;
1384
1385 SmallVector<CallInst *> SinCalls;
1386 SmallVector<CallInst *> CosCalls;
1387 SmallVector<CallInst *> SinCosCalls;
1388 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN,
1389 fInfo);
1390 const std::string PairName = PartnerInfo.mangle();
1391
1392 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName;
1393 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName();
1394 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle();
1395 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle();
1396
1397 // Intersect the two sets of flags.
1398 FastMathFlags FMF = FPOp->getFastMathFlags();
1399 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath);
1400
1401 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()};
1402
1403 for (User* U : CArgVal->users()) {
1404 CallInst *XI = dyn_cast<CallInst>(U);
1405 if (!XI || XI->getFunction() != F || XI->isNoBuiltin())
1406 continue;
1407
1408 Function *UCallee = XI->getCalledFunction();
1409 if (!UCallee)
1410 continue;
1411
1412 bool Handled = true;
1413
1414 if (UCallee->getName() == SinName)
1415 SinCalls.push_back(XI);
1416 else if (UCallee->getName() == CosName)
1417 CosCalls.push_back(XI);
1418 else if (UCallee->getName() == SinCosPrivateName ||
1419 UCallee->getName() == SinCosGenericName)
1420 SinCosCalls.push_back(XI);
1421 else
1422 Handled = false;
1423
1424 if (Handled) {
1425 MergeDbgLocs.push_back(XI->getDebugLoc());
1426 auto *OtherOp = cast<FPMathOperator>(XI);
1427 FMF &= OtherOp->getFastMathFlags();
1429 FPMath, XI->getMetadata(LLVMContext::MD_fpmath));
1430 }
1431 }
1432
1433 if (SinCalls.empty() || CosCalls.empty())
1434 return false;
1435
1436 B.setFastMathFlags(FMF);
1437 B.setDefaultFPMathTag(FPMath);
1438 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs);
1439 B.SetCurrentDebugLocation(DbgLoc);
1440
1441 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos);
1442
1443 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) {
1444 for (CallInst *C : Calls)
1445 C->replaceAllUsesWith(Res);
1446
1447 // Leave the other dead instructions to avoid clobbering iterators.
1448 };
1449
1450 replaceTrigInsts(SinCalls, Sin);
1451 replaceTrigInsts(CosCalls, Cos);
1452 replaceTrigInsts(SinCosCalls, SinCos);
1453
1454 // It's safe to delete the original now.
1455 CI->eraseFromParent();
1456 return true;
1457}
1458
1459bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0,
1460 double &Res1, Constant *copr0,
1461 Constant *copr1) {
1462 // By default, opr0/opr1/opr3 holds values of float/double type.
1463 // If they are not float/double, each function has to its
1464 // operand separately.
1465 double opr0 = 0.0, opr1 = 0.0;
1466 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1467 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1468 if (fpopr0) {
1469 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1470 ? fpopr0->getValueAPF().convertToDouble()
1471 : (double)fpopr0->getValueAPF().convertToFloat();
1472 }
1473
1474 if (fpopr1) {
1475 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1476 ? fpopr1->getValueAPF().convertToDouble()
1477 : (double)fpopr1->getValueAPF().convertToFloat();
1478 }
1479
1480 switch (FInfo.getId()) {
1481 default : return false;
1482
1484 Res0 = acos(opr0);
1485 return true;
1486
1488 // acosh(x) == log(x + sqrt(x*x - 1))
1489 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1490 return true;
1491
1493 Res0 = acos(opr0) / MATH_PI;
1494 return true;
1495
1497 Res0 = asin(opr0);
1498 return true;
1499
1501 // asinh(x) == log(x + sqrt(x*x + 1))
1502 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1503 return true;
1504
1506 Res0 = asin(opr0) / MATH_PI;
1507 return true;
1508
1510 Res0 = atan(opr0);
1511 return true;
1512
1514 // atanh(x) == (log(x+1) - log(x-1))/2;
1515 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1516 return true;
1517
1519 Res0 = atan(opr0) / MATH_PI;
1520 return true;
1521
1523 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1524 return true;
1525
1527 Res0 = cos(opr0);
1528 return true;
1529
1531 Res0 = cosh(opr0);
1532 return true;
1533
1535 Res0 = cos(MATH_PI * opr0);
1536 return true;
1537
1539 Res0 = exp(opr0);
1540 return true;
1541
1543 Res0 = pow(2.0, opr0);
1544 return true;
1545
1547 Res0 = pow(10.0, opr0);
1548 return true;
1549
1551 Res0 = log(opr0);
1552 return true;
1553
1555 Res0 = log(opr0) / log(2.0);
1556 return true;
1557
1559 Res0 = log(opr0) / log(10.0);
1560 return true;
1561
1563 Res0 = 1.0 / sqrt(opr0);
1564 return true;
1565
1567 Res0 = sin(opr0);
1568 return true;
1569
1571 Res0 = sinh(opr0);
1572 return true;
1573
1575 Res0 = sin(MATH_PI * opr0);
1576 return true;
1577
1579 Res0 = tan(opr0);
1580 return true;
1581
1583 Res0 = tanh(opr0);
1584 return true;
1585
1587 Res0 = tan(MATH_PI * opr0);
1588 return true;
1589
1590 // two-arg functions
1593 Res0 = pow(opr0, opr1);
1594 return true;
1595
1597 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1598 double val = (double)iopr1->getSExtValue();
1599 Res0 = pow(opr0, val);
1600 return true;
1601 }
1602 return false;
1603 }
1604
1606 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1607 double val = (double)iopr1->getSExtValue();
1608 Res0 = pow(opr0, 1.0 / val);
1609 return true;
1610 }
1611 return false;
1612 }
1613
1614 // with ptr arg
1616 Res0 = sin(opr0);
1617 Res1 = cos(opr0);
1618 return true;
1619 }
1620
1621 return false;
1622}
1623
1624bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1625 int numArgs = (int)aCI->arg_size();
1626 if (numArgs > 3)
1627 return false;
1628
1629 Constant *copr0 = nullptr;
1630 Constant *copr1 = nullptr;
1631 if (numArgs > 0) {
1632 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1633 return false;
1634 }
1635
1636 if (numArgs > 1) {
1637 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1638 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1639 return false;
1640 }
1641 }
1642
1643 // At this point, all arguments to aCI are constants.
1644
1645 // max vector size is 16, and sincos will generate two results.
1646 double DVal0[16], DVal1[16];
1647 int FuncVecSize = getVecSize(FInfo);
1648 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1649 if (FuncVecSize == 1) {
1650 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) {
1651 return false;
1652 }
1653 } else {
1654 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1655 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1656 for (int i = 0; i < FuncVecSize; ++i) {
1657 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1658 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1659 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) {
1660 return false;
1661 }
1662 }
1663 }
1664
1665 LLVMContext &context = aCI->getContext();
1666 Constant *nval0, *nval1;
1667 if (FuncVecSize == 1) {
1668 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]);
1669 if (hasTwoResults)
1670 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]);
1671 } else {
1672 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1673 SmallVector <float, 0> FVal0, FVal1;
1674 for (int i = 0; i < FuncVecSize; ++i)
1675 FVal0.push_back((float)DVal0[i]);
1676 ArrayRef<float> tmp0(FVal0);
1677 nval0 = ConstantDataVector::get(context, tmp0);
1678 if (hasTwoResults) {
1679 for (int i = 0; i < FuncVecSize; ++i)
1680 FVal1.push_back((float)DVal1[i]);
1681 ArrayRef<float> tmp1(FVal1);
1682 nval1 = ConstantDataVector::get(context, tmp1);
1683 }
1684 } else {
1685 ArrayRef<double> tmp0(DVal0);
1686 nval0 = ConstantDataVector::get(context, tmp0);
1687 if (hasTwoResults) {
1688 ArrayRef<double> tmp1(DVal1);
1689 nval1 = ConstantDataVector::get(context, tmp1);
1690 }
1691 }
1692 }
1693
1694 if (hasTwoResults) {
1695 // sincos
1696 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1697 "math function with ptr arg not supported yet");
1698 new StoreInst(nval1, aCI->getArgOperand(1), aCI->getIterator());
1699 }
1700
1701 replaceCall(aCI, nval0);
1702 return true;
1703}
1704
1707 AMDGPULibCalls Simplifier;
1708 Simplifier.initNativeFuncs();
1709 Simplifier.initFunction(F, AM);
1710
1711 bool Changed = false;
1712
1713 LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1714 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1715
1716 for (auto &BB : F) {
1717 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1718 // Ignore non-calls.
1719 CallInst *CI = dyn_cast<CallInst>(I);
1720 ++I;
1721
1722 if (CI) {
1723 if (Simplifier.fold(CI))
1724 Changed = true;
1725 }
1726 }
1727 }
1728 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1729}
1730
1733 if (UseNative.empty())
1734 return PreservedAnalyses::all();
1735
1736 AMDGPULibCalls Simplifier;
1737 Simplifier.initNativeFuncs();
1738 Simplifier.initFunction(F, AM);
1739
1740 bool Changed = false;
1741 for (auto &BB : F) {
1742 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1743 // Ignore non-calls.
1744 CallInst *CI = dyn_cast<CallInst>(I);
1745 ++I;
1746 if (CI && Simplifier.useNative(CI))
1747 Changed = true;
1748 }
1749 }
1750 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1751}
static bool isKnownIntegral(const Value *V, const DataLayout &DL, FastMathFlags FMF)
static const TableEntry tbl_log[]
static const TableEntry tbl_tgamma[]
static AMDGPULibFunc::EType getArgType(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_expm1[]
static const TableEntry tbl_asinpi[]
static const TableEntry tbl_cos[]
#define MATH_SQRT2
static const TableEntry tbl_exp10[]
static CallInst * CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, const Twine &Name="")
static CallInst * CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, Value *Arg2, const Twine &Name="")
static const TableEntry tbl_rsqrt[]
static const TableEntry tbl_atanh[]
static const TableEntry tbl_cosh[]
static const TableEntry tbl_asin[]
static const TableEntry tbl_sinh[]
static const TableEntry tbl_acos[]
static const TableEntry tbl_tan[]
static const TableEntry tbl_cospi[]
static const TableEntry tbl_tanpi[]
static cl::opt< bool > EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden)
static bool HasNative(AMDGPULibFunc::EFuncId id)
ArrayRef< TableEntry > TableRef
static int getVecSize(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_sin[]
static const TableEntry tbl_atan[]
static const TableEntry tbl_log2[]
static const TableEntry tbl_acospi[]
static const TableEntry tbl_sqrt[]
static const TableEntry tbl_asinh[]
#define MATH_E
static TableRef getOptTable(AMDGPULibFunc::EFuncId id)
static const TableEntry tbl_acosh[]
static const TableEntry tbl_exp[]
static const TableEntry tbl_cbrt[]
static const TableEntry tbl_sinpi[]
static const TableEntry tbl_atanpi[]
#define MATH_PI
static FunctionType * getPownType(FunctionType *FT)
static const TableEntry tbl_erf[]
static const TableEntry tbl_log10[]
#define MATH_SQRT1_2
static const TableEntry tbl_erfc[]
static cl::list< std::string > UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden)
static const TableEntry tbl_tanh[]
static const TableEntry tbl_exp2[]
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_DEBUG(...)
Definition: Debug.h:106
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:64
std::string Name
uint64_t Size
AMD GCN specific subclass of TargetSubtarget.
loop term fold
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
FunctionAnalysisManager FAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void replaceCall(FPMathOperator *I, Value *With)
bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const
bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const
bool fold(CallInst *CI)
static void replaceCall(Instruction *I, Value *With)
bool useNative(CallInst *CI)
void initFunction(Function &F, FunctionAnalysisManager &FAM)
AMDGPULibCalls()=default
bool isUnsafeMath(const FPMathOperator *FPOp) const
static unsigned getEPtrKindFromAddrSpace(unsigned AS)
Wrapper class for AMDGPULIbFuncImpl.
static bool parse(StringRef MangledName, AMDGPULibFunc &Ptr)
std::string getName() const
Get unmangled name for mangled library function and name for unmangled library function.
static FunctionCallee getOrInsertFunction(llvm::Module *M, const AMDGPULibFunc &fInfo)
void setPrefix(ENamePrefix PFX)
bool isCompatibleSignature(const Module &M, const FunctionType *FuncTy) const
EFuncId getId() const
bool isMangled() const
Param * getLeads()
Get leading parameters for mangled lib functions.
void setId(EFuncId Id)
ENamePrefix getPrefix() const
bool isNegative() const
Definition: APFloat.h:1440
double convertToDouble() const
Converts this APFloat to host double value.
Definition: APFloat.cpp:5527
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: APFloat.h:1423
float convertToFloat() const
Converts this APFloat to host float value.
Definition: APFloat.cpp:5555
bool isZero() const
Definition: APFloat.h:1436
bool isInteger() const
Definition: APFloat.h:1457
Class for arbitrary precision integers.
Definition: APInt.h:78
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1542
an instruction to allocate memory on the stack
Definition: Instructions.h:63
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:429
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: InstrTypes.h:1873
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1349
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
Definition: InstrTypes.h:1879
bool isNoInline() const
Return true if the call should not be inlined.
Definition: InstrTypes.h:1882
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1294
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1299
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1207
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
unsigned arg_size() const
Definition: InstrTypes.h:1292
AttributeList getAttributes() const
Return the attributes for this call.
Definition: InstrTypes.h:1425
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1388
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
unsigned getNumElements() const
Return the number of elements in the array or vector.
Definition: Constants.cpp:2857
Constant * getElementAsConstant(unsigned i) const
Return a Constant for a specified index's element.
Definition: Constants.cpp:3199
APFloat getElementAsAPFloat(unsigned i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
Definition: Constants.cpp:3162
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:770
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:3067
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
Definition: Constants.cpp:3006
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:271
const APFloat & getValue() const
Definition: Constants.h:315
const APFloat & getValueAPF() const
Definition: Constants.h:314
bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: Constants.cpp:1119
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:157
Align getAlignValue() const
Return the constant as an llvm::Align, interpreting 0 as Align(1).
Definition: Constants.h:175
This is an important base class in LLVM.
Definition: Constant.h:42
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
Debug location.
static DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:33
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:205
bool isFast() const
Test if this operation allows all non-strict floating-point transforms.
Definition: Operator.h:291
bool hasNoNaNs() const
Test if this operation's arguments and results are assumed not-NaN.
Definition: Operator.h:307
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:338
bool hasNoInfs() const
Test if this operation's arguments and results are assumed not-infinite.
Definition: Operator.h:312
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition: Operator.h:333
float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
void setAllowContract(bool B=true)
Definition: FMF.h:91
bool noInfs() const
Definition: FMF.h:67
bool none() const
Definition: FMF.h:58
bool approxFunc() const
Definition: FMF.h:71
bool noNaNs() const
Definition: FMF.h:66
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:170
FunctionType * getFunctionType()
Definition: DerivedTypes.h:187
Class to represent function types.
Definition: DerivedTypes.h:105
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:137
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:704
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:471
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:66
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:92
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:70
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:386
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1679
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
Metadata node.
Definition: Metadata.h:1069
static MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1173
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
bool empty() const
Definition: SmallVector.h:81
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:153
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:142
Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:156
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
void dropAllReferences()
Drop all references to operands.
Definition: User.h:345
Value * getOperand(unsigned i) const
Definition: User.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Base class of all SIMD vector types.
Definition: DerivedTypes.h:427
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
@ FLAT_ADDRESS
Address space for flat memory.
@ PRIVATE_ADDRESS
Address space for private memory.
AttributeMask typeIncompatible(Type *Ty, AttributeSet AS, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:731
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
@ ValueOptional
Definition: CommandLine.h:130
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
@ CommaSeparated
Definition: CommandLine.h:163
constexpr double ln2
Definition: MathExtras.h:49
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static double log2(double V)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point value can never contain a NaN or infinity.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39