Skip to main content

The Complexity of Routing with Few Collisions

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

We study the computational complexity of routing multiple objects through a network in such a way that only few collisions occur: Given a graph G with two distinct terminal vertices and two positive integers p and k, the question is whether one can connect the terminals by at least p routes (e.g. paths) such that at most k edges are time-wise shared among them. We study three types of routes: traverse each vertex at most once (paths), each edge at most once (trails), or no such restrictions (walks). We prove that for paths and trails the problem is \({\text {NP}}\)-complete on undirected and directed graphs even if k is constant or the maximum vertex degree in the input graph is constant. For walks, however, it is solvable in polynomial time on undirected graphs for arbitrary k and on directed graphs if k is constant. We additionally study for all route types a variant of the problem where the maximum length of a route is restricted by some given upper bound. We prove that this length-restricted variant has the same complexity classification with respect to paths and trails, but for walks it becomes \({\text {NP}}\)-complete on undirected graphs.

Major parts of this work done while all authors were with TU Berlin. A full version of this paper is available at http://arxiv.org/abs/1705.03673.

T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13-2).

M. Sorge—Supported by the DFG, project DAPA (NI 369/12-2), the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number 631163.11 and by the Israel Science Foundation (grant no. 551145/14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, Y., Halldórsson, B.V., Halldórsson, M.M., Ito, T., Konrad, C., Zhou, X.: The minimum vulnerability problem on graphs. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 299–313. Springer, Cham (2014). doi:10.1007/978-3-319-12691-3_23

    Google Scholar 

  2. Assadi, S., Emamjomeh-Zadeh, E., Norouzi-Fard, A., Yazdanbod, S., Zarrabi-Zadeh, H.: The minimum vulnerability problem. Algorithmica 70(4), 718–731 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s theorem. Networks 28(3), 125–134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  6. Fluschnik, T.: The Parameterized Complexity of Finding Paths with Shared Edges. Master thesis, Institut für Softwaretechnik und Theoretische Informatik, TU Berlin (2015). http://fpt.akt.tu-berlin.de/publications/theses/MA-till-fluschnik.pdf

  7. Fluschnik, T., Kratsch, S., Niedermeier, R., Sorge, M.: The parameterized complexity of the minimum shared edges problem. In: Proceedings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2015), LIPIcs, vol. 45, pp. 448–462. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). doi:10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  11. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Köhler, E., Möhring, R.H., Skutella, M.: Traffic networks and flows over time. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 166–196. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02094-0_9

    Chapter  Google Scholar 

  13. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2_57

    Chapter  Google Scholar 

  14. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)

    Article  MathSciNet  Google Scholar 

  15. Omran, M.T., Sack, J., Zarrabi-Zadeh, H.: Finding paths with minimum shared edges. J. Comb. Optim. 26(4), 709–722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Orlin, J.B.: Max flows in \(O(nm)\) time, or better. In: Proceedings of the 45th ACM Symposium on Theory of Computing (STOC 2013), pp. 765–774. ACM (2013)

    Google Scholar 

  17. Rashidi, H., Tsang, E.: Vehicle Scheduling in Port Automation: Advanced Algorithms for Minimum Cost Flow Problems, 2nd edn. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  18. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009). doi:10.1007/978-3-540-76796-1_21

    Chapter  Google Scholar 

  19. Ye, Z.Q., Li, Y.M., Lu, H.Q., Zhou, X.: Finding paths with minimum shared edges in graphs with bounded treewidths. In: Proceedings of the International Conference on Frontiers of Computer Science (FCS 2013), pp. 40–46 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Fluschnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Fluschnik, T., Morik, M., Sorge, M. (2017). The Complexity of Routing with Few Collisions. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics