Skip to main content

Summary

We give an introduction into the fascinating area of flows over time—also called “dynamic flows” in the literature. Starting from the early work of Ford and Fulkerson on maximum flows over time, we cover many exciting results that have been obtained over the last fifty years. One purpose of this chapter is to serve as a possible basis for teaching network flows over time in an advanced course on combinatorial optimization.

This work was supported by DFG Research Center Matheon in Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  • Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces. Wiley, New York (1987)

    MATH  Google Scholar 

  • Anderson, E.J., Nash, P., Philpott, A.B.: A class of continuous network flow problems. Math. Oper. Res. 7, 501–514 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, E.J., Philpott, A.B.: Optimisation of flows in networks over time. In: Kelly, F.P. (ed.) Probability, Statistics and Optimisation, pp. 369–382. Wiley, New York (1994)

    Google Scholar 

  • Aronson, J.E.: A survey of dynamic network flows. Ann. Oper. Res. 20, 1–66 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Baumann, N., Skutella, M.: Solving evacuation problems efficiently: Earliest arrival flows with multiple sources. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, CA, pp. 399–408 (2006)

    Google Scholar 

  • Berlin, G.N.: The use of directed routes for assessing escape potential. National Fire Protection Association, Boston, MA (1979)

    Google Scholar 

  • Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. ZOR, Z. Oper.-Res. 37, 31–58 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  • Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacuation. Manage. Sci. 28, 86–105 (1982)

    Google Scholar 

  • Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate storage. In: Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 66–75 (2003)

    Google Scholar 

  • Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36, 1600–1630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Fleischer, L.K.: Faster algorithms for the quickest transshipment problem. SIAM J. Optim. 12, 18–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Fleischer, L.K., Tardos, E.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23, 71–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  • Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  • Gale, D.: Transient flows in networks. Mich. Math. J. 6, 59–63 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  • Hajek, B., Ogier, R.G.: Optimal dynamic routing in communication networks with continuous traffic. Networks 14, 457–487 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. Theor. Comput. Sci. 379, 387–404 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Hamacher, H.W., Tufecki, S.: On the use of lexicographic min cost flows in evacuation modeling. Nav. Res. Logist. 34, 487–503 (1987)

    Article  MATH  Google Scholar 

  • Hoppe, B.: Efficient dynamic network flow algorithms. PhD thesis, Cornell University (1995)

    Google Scholar 

  • Hoppe, B., Tardos, E.: Polynomial time algorithms for some evacuation problems. In: Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, Arlington, VA, pp. 433–441 (1994)

    Google Scholar 

  • Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res. 25, 36–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Jarvis, J., Ratliff, H.: Some equivalent objectives for dynamic network flow problems. Manage. Sci. 28, 106–108 (1982)

    MATH  MathSciNet  Google Scholar 

  • Klinz, B., Woeginger, G.J.: Minimum-cost dynamic flows: The series-parallel case. Networks 43, 153–162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  • Kotnyek, B.: An annotated overview of dynamic network flows. Rapport de recherche 4936, INRIA Sophia Antipolis (2003)

    Google Scholar 

  • Lovetskii, S.E., Melamed, I.I.: Dynamic network flows. Autom. Remote Control 48, 1417–1434 (1987). Translated from Avtomatika i Telemekhanika 11, 7–29 (1987)

    Google Scholar 

  • Martens, M., Skutella, M.: Length-bounded and dynamic k-splittable flows. In: Haasis, H.-D., Kopfer, H., Schönberger, J. (eds.) Operations Research Proceedings 2005, pp. 297–302. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math. Program. 7, 97–107 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  • Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21, 517–527 (1973)

    MATH  MathSciNet  Google Scholar 

  • Philpott, A.B.: Continuous-time flows in networks. Math. Oper. Res. 15, 640–661 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing. Handbooks in Operations Research and Management Science, vol. 8, Chap. 3, pp. 141–295. North-Holland, Amsterdam (1995)

    Google Scholar 

  • Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Tjandra, S.: Dynamic network optimization with application to the evacuation problem. PhD thesis, Universität Kaiserslautern, Shaker Verlag, Aachen (2003)

    Google Scholar 

  • Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19, 1602–1612 (1971)

    MATH  MathSciNet  Google Scholar 

  • Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow algorithms. Math. Program. 5, 255–266 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skutella, M. (2009). An Introduction to Network Flows over Time. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_21

Download citation

Publish with us

Policies and ethics