Abstract
This chapter comprises the essence of several years of tutorials the authors gave on experimental research in evolutionary computation. We highlight the renaissance of experimental techniques also in other fields to especially focus on the specific conditions of experimental research in computer science, or more concretely, metaheuristic optimization. The experimental setup is discussed together with the pitfalls awaiting the unexperienced (and sometimes even the experienced). We present a severity criterion as a meta statistical concept for evaluating statistical inferences, which can be used to avoid fallacies, i.e., misconceptions resulting from incorrect reasoning in argumentation caused by floor or ceiling effects. The sequential parameter optimization is discussed as a meta statistical framework which integrates concepts such as severity. Parameter tuning is considered as a relatively new tool in method design and analysis, and it leads to the question of adaptability of optimization algorithms. Another branch of experimentation aims at attaining more concrete problem knowledge, we may term it “exploratory landscape analysis”, containing sample and visualization techniques that are often applied but not seen as being a methodological contribution. However, this chapter is not only a renarration of well-known facts. We also attempt to look into the future to estimate what the hot topics of methodological research will be in the coming years and what changes we may expect for the whole community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
SPOT can generate 100 randomly chosen design points of the SANN by using the following setting in the CONF file: init.design.size = 100 and init.design.repeats = 1.
- 2.
R is a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques. CRAN is a network of ftp and web servers around the world that store identical, up-to-date versions of code and documentation for R, see http://cran.r-project.org.
References
T. Bartz-Beielstein, Experimental Research in Evolutionary Computation—The New Experimentalism. Natural Computing Series (Springer, Berlin/Heidelberg/New York, 2006)
T. Bartz-Beielstein, How experimental algorithmics can benefit from Mayo’s extensions to Neyman-Pearson theory of testing. Synthese 163(3), 385–396 (2008). doi:10.1007/s11229-007-9297-z
T. Bartz-Beielstein, Sequential parameter optimization—an annotated bibliography. CIOP technical report 04/10, Research Center CIOP (Computational Intelligence, Optimization and Data Mining), Cologne University of Applied Science, Faculty of Computer Science and Engineering Science, Apr 2010
T. Bartz-Beielstein, SPOT: an R package for automatic and interactive tuning of optimization algorithms by sequential parameter optimization. CIOP technical report 05/10, Research Center CIOP (Computational Intelligence, Optimization and Data Mining), Cologne University of Applied Science, Faculty of Computer Science and Engineering Science, Jun 2010. Comments: related software can be downloaded from http://cran.r-project.org/web/packages/SPOT/index.html
T. Bartz-Beielstein, Writing interfaces for the sequential parameter optimization toolbox SPOT. CIOP technical report 07/10, Cologne University of Applied Sciences, Cologne University of Applied Science, Faculty of Computer Science and Engineering Science, July 2010
T. Bartz-Beielstein, M. Preuss, CEC tutorial on experimental research in evolutionary computation, in IEEE Congress on Evolutionary Computation, Tutorial Program, Tutorials given at CEC 2004, San Diego and CEC 2005, Edinburgh
T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation (tutorial), in Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, June 2005
T. Bartz-Beielstein, M. Preuss, Considerations of budget allocation for sequential parameter optimization (SPO), in Workshop on Empirical Methods for the Analysis of Algorithms, Proceedings, Reykjavik, ed. by L. Paquete et al., 2006, pp. 35–40
T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation (tutorial), in Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, July, 2006
T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation–the future of experimental research (tutorial), in Genetic and Evolutionary Computation Conference (GECCO 2007), London, July 2007
T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation–the future of experimental research (tutorial), in Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, July 2008
T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation–the future of experimental research (tutorial), in Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, July 2009
T. Bartz-Beielstein, M. Preuss, The future of experimental research, in Experimental Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuß (Springer, Berlin/Heidelberg/New York, 2010), pp. 17–46
T. Bartz-Beielstein, M. Preuss, Tuning and experimental analysis in evolutionary computation: what we still have wrong (tutorial), in Genetic and Evolutionary Computation Conference (GECCO 2010), Portland, July 2010
T. Bartz-Beielstein, M. Preuss, Automatic and interactive tuning of algorithms, in GECCO 2011 (Companion), ed. by N. Krasnogor, P.L. Lanzi (ACM, New York, 2011), pp. 1361–1380
T. Bartz-Beielstein, K.E. Parsopoulos, M.N. Vrahatis, Design and analysis of optimization algorithms using computational statistics. Appl. Numer. Anal. Comput. Math. 1(2), 413–433 (2004)
T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in Proceedings 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh, vol. 1, ed. by B. McKay et al. (IEEE, Piscataway, 2005), pp. 773–780
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (ed.), Experimental Methods for the Analysis of Optimization Algorithms. (Springer, Berlin/Heidelberg/New York, 2010)
T. Bartz-Beielstein, M. Friese, O. Flasch, W. Konen, P. Koch, B. Naujoks, Ensemble-based modeling. CIOP technical report 06/11, Research Center CIOP (Computational Intelligence, Optimization and Data Mining), Cologne University of Applied Science, Faculty of Computer Science and Engineering Science, July 2011
R.E. Bechhofer, T.J. Santner, D.M. Goldsman, Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons (Wiley, New York, 1995)
C.J.P. Belisle, Convergence theorems for a class of simulated annealing algorithms. J. Appl. Probab. 29, 885–895 (1992)
M. Birattari, Tuning Metaheuristics (Springer, Berlin/Heidelberg/New York, 2005)
G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters (Wiley, New York, 1978)
A.F. Chalmers, What Is This Thing Called Science (University of Queensland Press, St. Lucia, 1999)
C.H. Chen, An effective approach to smartly allocate computing budget for discrete event simulation, in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, 1995, pp. 2598–2605
M. Chimani, K. Klein, Algorithm engineering: concepts and practice, in Experimental Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuß (Springer, New York, 2010)
P.R. Cohen, A survey of the eighth national conference on artificial intelligence: pulling together or pulling apart? AI Mag. 12(1), 16–41 (1991)
P.R. Cohen, Empirical Methods for Artificial Intelligence (MIT, Cambridge, 1995)
A.E. Eiben, M. Jelasity, A critical note on experimental research methodology in EC, in Proceedings of the 2002 Congress on Evolutionary Computation (CEC’2002), Hawaii (IEEE, 2002), pp. 582–587
O. Flasch, T. Bartz-Beielstein, A. Davtyan, P. Koch, W. Konen, T.D. Oyetoyan, M. Tamutan, Comparing CI methods for prediction models in environmental engineering. CIOP technical report 02/10, Research Center CIOP (Computational Intelligence, Optimization and Data Mining), Faculty of Computer Science and Engineering Science, Cologne University of Applied Sciences, Germany, Feb 2010
T. Fober, Experimentelle Analyse Evolutionärer Algorithmen auf dem CEC 2005 Testfunktionensatz. Master’s thesis, Universität Dortmund, 2006
T. Fober, M. Mernberger, G. Klebe, E. Hüllermeier, Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules. Bioinformatics 25(16), 2110–2117 (2009)
T. Fober, S. Glinca, G. Klebe, E. Hüllermeier, Superposition and alignment of labeled point clouds. IEEE/ACM Trans. Comput. Biol. Bioinfo. 8(6), 1653–1666 (2011)
M. Gallagher, B. Yuan, A general-purpose tunable landscape generator. IEEE Trans. Evol. Comput. 10(5), 590–603 (2006)
N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)
N. Hansen, A. Auger, S. Finck, R. Ros, Real-parameter black-box optimization benchmarking 2009: experimental setup. Technical report RR-6828, INRIA, 2009
N. Hansen, S. Finck, R. Ros, A. Auger, Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical report RR-6829, INRIA, 2009
J. He, C. Reeves, C. Witt, X. Yao, A note on problem difficulty measures in black-box optimization: classification, realizations and predictability. Evol. Comput. 15(4), 435–443 (2007)
F. Henrich, C. Bouvy, C. Kausch, K. Lucas, M. Preuss, G. Rudolph, P. Roosen, Economic optimization of non-sharp separation sequences by means of evolutionary algorithms. Comput. Chem. Eng. 32(7), 1411–1432 (2008)
J.N. Hooker, Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42 (1996)
H.H. Hoos, T. Stützle, Evaluating Las Vegas algorithms: pitfalls and remedies, in UAI ’98: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, ed. by G.F. Cooper, S. Moral (Morgan Kaufmann, 1998), pp. 238–245
F. Hutter, T. Bartz-Beielstein, H. Hoos, K. Leyton-Brown, K.P. Murphy, Sequential model-based parameter optimisation: an experimental investigation of automated and interactive approaches empirical methods for the analysis of optimization algorithms, in Experimental Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuß (Springer, Berlin/Heidelberg/New York, 2010), pp. 361–414
F. Hutter, H.H. Hoos, K. Leyton-Brown, K.P. Murphy, Time-bounded sequential parameter optimization, in Proceedings of LION 2010, Venice. LNCS, 6073 (2010), pp. 281–298
T. Jansen, On classifications of fitness functions, in Theoretical Aspects of Evolutionary Computing, ed. by L. Kallel, B. Naudts, A. Rogers (Springer, Berlin, 2001), pp. 371–386
D.S. Johnson, A theoretician’s guide to the experimental analysis of algorithms, in Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges (AMS, Providence, 2002), pp. 215–250
T. Jones, S. Forrest, Fitness distance correlation as a measure of problem difficulty for genetic algorithms, in Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh (Morgan Kaufmann, 1995), pp. 184–192
K. Knight, P. Langley, P.R. Cohen, What makes a compelling empirical evaluation? IEEE Intel. Syst. 11, 10–14 (1996)
W. Konen, T. Zimmer, T. Bartz-Beielstein, Optimized modelling of fill levels in stormwater tanks using CI-based parameter selection schemes (in German). at-Automatisierungstechnik 57(3), 155–166 (2009)
O. Kramer, B. Gloger, A. Goebels, An experimental analysis of evolution strategies and particle swarm optimisers using design of experiments, in Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, London (ACM, 2007), pp. 674–681
C.W.G. Lasarczyk, Genetische Programmierung einer algorithmischen Chemie. PhD thesis, Technische Universität Dortmund, 2007
C.W.G. Lasarczyk, W. Banzhaf, Total synthesis of algorithmic chemistries, in GECCO ’05: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington D.C. (ACM, New York, 2005), pp. 1635–1640
D.G. Mayo, Error and the Growth of Experimental Knowledge (The University of Chicago Press, Chicago, 1996)
D.G. Mayo, A. Spanos, Severe testing as a basic concept in a Neyman–Pearson philosophy of induction. Br. J. Philos. Sci. 57, 323–357 (2006)
D.G. Mayo, A. Spanos, Error and Inference (Cambridge University Press, Cambridge, 2010)
C.C. McGeoch, Toward an experimental method for algorithm simulation. INFORMS J. Comput. 8(1), 1–15 (1996)
J. Mehnen, T. Michelitsch, C. Lasarczyk, T. Bartz-Beielstein, Multi-objective evolutionary design of mold temperature control using DACE for parameter optimization. Int. J. Appl. Electromagn. Mech. 25(1–4), 661–667 (2007)
O. Mersmann, M. Preuss, H. Trautmann, Benchmarking evolutionary algorithms: towards exploratory landscape analysis, in Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I, PPSN’10, Krakow (Springer, Berlin/Heidelberg, 2010), pp. 73–82
O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, G. Rudolph, Exploratory landscape analysis, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, Dublin (ACM, New York, 2011), pp. 829–836
B.M. Moret, H.D. Shapiro, Algorithms and experiments: the new (and old) methodology. J. Univers. Comput. Sci. 7(5), 434–446 (2001)
V. Nannen, Evolutionary agent-based policy analysis in dynamic environments. PhD thesis, Vrije Universiteit Amsterdam, 2009
V. Nannen, A.E. Eiben, A method for parameter calibration and relevance estimation in evolutionary algorithms, in Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, ed. by M. Cattolico (ACM, 2006), pp. 183–190
J.C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd edn. (IOP, Bristol, 1990)
B. Naujoks, D. Quagliarella, T. Bartz-Beielstein, Sequential parameter optimisation of evolutionary algorithms for airfoil design, in Proceedings Design and Optimization: Methods and Applications (ERCOFTAC’06), Berlin, ed. by G. Winter et al. (University of Las Palmas de Gran Canaria, 2006), pp. 231–235
J. Neyman, E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. A 231, 289–337 (1933)
N.H. Pothmann, Kreuzungsminimierung für k-seitige Buchzeichnungen von Graphen mit Ameisenalgorithmen. Master’s thesis, Universität Dortmund, 2007
M. Preuss, Niching prospects, in Bioinspired Optimization Methods and Their Applications (BIOMA 2006), ed. by B. Filipic, J. Silc (Jozef Stefan Institute, Ljubljana, 2006), pp. 25–34
M. Preuss, T. Bartz-Beielstein, Sequential parameter optimization applied to self-adaptation for binary-coded evolutionary algorithms, in Parameter Setting in Evolutionary Algorithms, ed. by F. Lobo, C. Lima, Z. Michalewicz. Studies in Computational Intelligence (Springer, New York, 2007), pp. 91–120
M. Preuss, G. Rudolph, F. Tumakaka, Solving multimodal problems via multiobjective techniques with application to phase equilibrium detection, in Proceedings of the International Congress on Evolutionary Computation (CEC2007), Singapore (IEEE, Piscataway, 2007)
M. Preuss, G. Rudolph, S. Wessing, Tuning optimization algorithms for real-world problems by means of surrogate modeling, in Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10, Portland (ACM, New York, 2010), pp. 401–408
M. Preuss, C. Stoean, R. Stoean, Niching foundations: basin identification on fixed-property generated landscapes, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, Dublin (ACM, 2011), pp. 837–844
R.L. Rardin, R. Uzsoy, Experimental evaluation of heuristic optimization algorithms: a tutorial. J. Heuristics 7(3), 261–304 (2001)
G. Rudolph, M. Preuss, J. Quadflieg, Two-layered surrogate modeling for tuning optimization metaheuristics. Algorithm engineering report TR09-2-005, Faculty of Computer Science, Algorithm Engineering (Ls11), Technische Universität Dortmund, Sept 2009
R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions: a survey of some theoretical and practical aspects of genetic algorithms. BioSystems 39, 263–278 (1996)
S.K. Smit, A.E. Eiben, Comparing parameter tuning methods for evolutionary algorithms, in IEEE Congress on Evolutionary Computation (CEC), Trondheim, 2009, pp. 399–406
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore, 2005. http://www.ntu.edu.sg/home/EPNSugan
A. Törn, M. Ali, S. Viitanen, Stochastic global optimization: problem classes and solution techniques. J. Glob. Optim. 14(4), 437–447 (1999)
M. Tosic, Evolutionäre Kreuzungsminimierung. Diploma thesis, University of Dortmund, Jan 2006
H. Trautmann, J. Mehnen, Statistical methods for improving multi-objective evolutionary optimisation. Intern. J. Comput. Intell. Res. 5(2), 72–78 (2009)
L. Volkert, Investigating EA based training of HMM using a sequential parameter optimization approach, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, ed. by G.G. Yen et al. (IEEE, 2006), pp. 2742–2749
S. Wessing, Towards optimal parameterizations of the S-metric selection evolutionary multi-objective algorithms. Algorithm engineering report TR09-2-006, Universität Dortmund, Sept 2009
S. Wessing, M. Preuß, G. Rudolph, When parameter tuning actually is parameter control, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, Dublin (ACM, 2011), pp. 821–828
Y. Yi, Fuzzy operator trees for modeling utility functions. PhD thesis, Philipps-Universität Marburg, 2008
Acknowledgements
This work was supported by the Bundesministerium für Bildung und Forschung (BMBF) under the grants FIWA (AIF FKZ 17N2309), MCIOP (AIF FKZ 17N0311), and by the Cologne University of Applied Sciences under the research focus grant COSA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bartz-Beielstein, T., Preuss, M. (2014). Experimental Analysis of Optimization Algorithms: Tuning and Beyond. In: Borenstein, Y., Moraglio, A. (eds) Theory and Principled Methods for the Design of Metaheuristics. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33206-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-33206-7_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33205-0
Online ISBN: 978-3-642-33206-7
eBook Packages: Computer ScienceComputer Science (R0)