Skip to main content

Analysis and Visualization of the Impact of Different Parameter Configurations on the Behavior of Evolutionary Algorithms

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10671))

Included in the following conference series:

  • 1130 Accesses

Abstract

Evolutionary algorithms are generic and flexible optimization algorithms which can be applied to many optimization problems in different domains. Depending on the specific type of evolutionary algorithm, they offer several parameters such as population size, mutation probability, crossover and mutation operators, or number of elite solutions. How these parameters are set has a crucial impact on the algorithm’s search behavior and thus affects its performance. Therefore, parameter tuning is an important and challenging task in each application of evolutionary algorithms in order to retrieve satisfying results.

In this paper, we show how software frameworks for evolutionary algorithms can support this task. As an example of such a framework, we describe how HeuristicLab enables automated execution of extensive parameter tests as well as its capabilities to analyze and visualize the obtained results. We also introduce a new chart of HeuristicLab, which can be used to compare the performance of many different parameter configurations and to drill down on different configurations in an interactive way. By this means this new chart helps users to visualize the influence of different parameter values as well as their interdependencies and is therefore a powerful feature in order to gain a deeper understanding of the behavior of evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://dev.heuristiclab.com.

References

  1. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evolut. Comput. 1, 19–31 (2011)

    Article  Google Scholar 

  2. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  3. Wagner, S., et al.: Architecture and design of the HeuristicLab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 197–261. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-01436-4_10

    Chapter  Google Scholar 

Download references

Acknowledgements

The work described in this paper is part of the COMET Project #843532 Heuristic Optimization in Production and Logistics (HOPL), funded by the Austrian Research Promotion Agency (FFG) and the Government of Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, S., Beham, A., Affenzeller, M. (2018). Analysis and Visualization of the Impact of Different Parameter Configurations on the Behavior of Evolutionary Algorithms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10671. Springer, Cham. https://doi.org/10.1007/978-3-319-74718-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74718-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74717-0

  • Online ISBN: 978-3-319-74718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics