-
Notifications
You must be signed in to change notification settings - Fork 12.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add midpoint function for all integers and floating numbers #92048
Conversation
(rust-highfive has picked a reviewer for you, use r? to override) |
For unsigned integers, it might be worthwhile to consider a branchless version using the well-known fact that the average rounding down can be calculated by pub const fn midpoint(a: u64, b: u64) -> u64 {
let b1 = b + ((b < a) as u64);
return ((a ^ b1) >> 1) + (a & b1);
} However, in many applications the branch will be perfectly predictable, in which case the method in this PR would probably be faster. |
I've done some comparisons on x86_64 with
It seems that given the current optimization of LLVM (and GCC in a similar manner), my understanding of If you (@falk-hueffner) or @joshtriplett think this is worthwhile I'm happy to change my implementation to use your solution for |
I've rebase the branch, inline the implementation of the signed numbers and added the function to |
This comment has been minimized.
This comment has been minimized.
849a18e
to
02aa865
Compare
This comment has been minimized.
This comment has been minimized.
f6fb018
to
66dcac9
Compare
r? @rust-lang/libs-api |
This comment was marked as outdated.
This comment was marked as outdated.
This comment was marked as outdated.
This comment was marked as outdated.
FWIW, num-integer has similar methods in its At least we won't collide names if we stick with |
This comment was marked as resolved.
This comment was marked as resolved.
This comment was marked as resolved.
This comment was marked as resolved.
I'm reassigning this PR because I'm taking a break from the review rotation for a little while. Thank you for your patience. r? rust-lang/libs-api |
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]> Reviewed-by: Martin Rodriguez Reboredo <[email protected]> Link: https://lore.kernel.org/r/[email protected] [boqun: Resolve conflicts with bindgen 0.65.1 patch] [boqun: Resolve conflicts with __rust_alloc* fix ]
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.1 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. # Required changes For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Closes: Rust-for-Linux#68 Reviewed-by: Martin Rodriguez Reboredo <[email protected]> Reviewed-by: Trevor Gross <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
This is the second upgrade to the Rust toolchain, from 1.68.2 to 1.71.0 (i.e. the latest). See the upgrade policy [1] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features (that we use) were stabilized. Therefore, the only unstable feature allowed to be used outside the `kernel` crate is still `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. For the upgrade, this patch requires the following changes: - Removal of the `__rust_*` allocator functions, together with the addition of the `__rust_no_alloc_shim_is_unstable` static. See [3] for details. - Some more compiler builtins added due to `<f{32,64}>::midpoint()` that got added in Rust 1.71 [4]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: Rust-for-Linux/linux#2 [2] Link: rust-lang/rust#86844 [3] Link: rust-lang/rust#92048 [4] Signed-off-by: Miguel Ojeda <[email protected]>
Change f32::midpoint to upcast to f64 This has been verified by kani as a correct optimization see: rust-lang#110840 (comment) The new implementation is branchless and only differs in which NaN values are produced (if any are produced at all), which is fine to change. Aside from NaN handling, this implementation produces bitwise identical results to the original implementation. Question: do we need a codegen test for this? I didn't add one, since the original PR rust-lang#92048 didn't have any codegen tests.
Change f32::midpoint to upcast to f64 This has been verified by kani as a correct optimization see: rust-lang#110840 (comment) The new implementation is branchless and only differs in which NaN values are produced (if any are produced at all), which is fine to change. Aside from NaN handling, this implementation produces bitwise identical results to the original implementation. Question: do we need a codegen test for this? I didn't add one, since the original PR rust-lang#92048 didn't have any codegen tests.
Change f32::midpoint to upcast to f64 This has been verified by kani as a correct optimization see: rust-lang#110840 (comment) The new implementation is branchless and only differs in which NaN values are produced (if any are produced at all), which is fine to change. Aside from NaN handling, this implementation produces bitwise identical results to the original implementation. Question: do we need a codegen test for this? I didn't add one, since the original PR rust-lang#92048 didn't have any codegen tests.
Change f32::midpoint to upcast to f64 This has been verified by kani as a correct optimization see: rust-lang#110840 (comment) The new implementation is branchless and only differs in which NaN values are produced (if any are produced at all), which is fine to change. Aside from NaN handling, this implementation produces bitwise identical results to the original implementation. Question: do we need a codegen test for this? I didn't add one, since the original PR rust-lang#92048 didn't have any codegen tests.
Rollup merge of rust-lang#121062 - RustyYato:f32-midpoint, r=the8472 Change f32::midpoint to upcast to f64 This has been verified by kani as a correct optimization see: rust-lang#110840 (comment) The new implementation is branchless and only differs in which NaN values are produced (if any are produced at all), which is fine to change. Aside from NaN handling, this implementation produces bitwise identical results to the original implementation. Question: do we need a codegen test for this? I didn't add one, since the original PR rust-lang#92048 didn't have any codegen tests.
This pull-request adds the
midpoint
function to{u,i}{8,16,32,64,128,size}
,NonZeroU{8,16,32,64,size}
andf{32,64}
.This new function is analog to the C++ midpoint function, and basically compute
(a + b) / 2
with a rounding towardsnegative infinity in the case of integers. Or simply said:a
midpoint(a, b)
is(a + b) >> 1
as if it were performed in a sufficiently-large signed integral type.Note that unlike the C++ function this pull-request does not implement this function on pointers (
*const T
or*mut T
). This could be implemented in a future pull-request if desire.Implementation
For
f32
andf64
the implementation in based on thelibcxx
one. I originally tried many different approach but all of them failed or lead me with a poor version of thelibcxx
. Note thatlibstdc++
has a very similar one; Microsoft STL implementation is also basically the same aslibcxx
. It unfortunately doesn't seems like a better way exist.For unsigned integers I created the macro
midpoint_impl!
, this macro has two branches:$SelfT
and is used when there is no unsigned integer with at least the double of bits. The code simply use this formulaa + (b - a) / 2
with the arguments in the correct order and signs to have the good rounding.$WideT
(at least double of bits as$SelfT
) is provided, using a wider number means that no overflow can occur, this greatly improve the codegen (no branch and less instructions).For signed integers the code basically forwards the signed numbers to the unsigned version of midpoint by mapping the signed numbers to their unsigned numbers (
ex: i8 [-128; 127] to [0; 255]
) and vice versa.I originally created a version that worked directly on the signed numbers but the code was "ugly" and not understandable. Despite this mapping "overhead" the codegen is better than my most optimized version on signed integers.
Note that in the case of unsigned numbers I tried to be smart and used#[cfg(target_pointer_width = "64")]
to determine if using the wide version was better or not by looking at the assembly on godbolt. This was applied tou32
,u64
andusize
and doesn't change the behavior only the assembly code generated.