Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tracking Issue for const_maybe_uninit_zeroed #91850

Closed
3 tasks done
lilasta opened this issue Dec 13, 2021 · 4 comments
Closed
3 tasks done

Tracking Issue for const_maybe_uninit_zeroed #91850

lilasta opened this issue Dec 13, 2021 · 4 comments
Labels
C-tracking-issue Category: A tracking issue for an RFC or an unstable feature. T-libs-api Relevant to the library API team, which will review and decide on the PR/issue.

Comments

@lilasta
Copy link
Contributor

lilasta commented Dec 13, 2021

Feature gate: #![feature(const_maybe_uninit_zeroed)]

This is a tracking issue for implementing const MaybeUninit::zeroed.

Public API

// core::mem
impl<T> MaybeUninit<T> {
    pub const fn zeroed() -> MaybeUninit<T>;
}

Steps / History

Unresolved Questions

  • None yet.
@lilasta lilasta added C-tracking-issue Category: A tracking issue for an RFC or an unstable feature. T-libs-api Relevant to the library API team, which will review and decide on the PR/issue. labels Dec 13, 2021
matthiaskrgr added a commit to matthiaskrgr/rust that referenced this issue Dec 14, 2021
…=yaahc

Make `MaybeUninit::zeroed` `const`

Tracking issue: rust-lang#91850

```rust
// core::mem
impl<T> MaybeUninit<T> {
    pub const fn zeroed() -> MaybeUninit<T>;
}
```
matthiaskrgr added a commit to matthiaskrgr/rust that referenced this issue Dec 14, 2021
…=yaahc

Make `MaybeUninit::zeroed` `const`

Tracking issue: rust-lang#91850

```rust
// core::mem
impl<T> MaybeUninit<T> {
    pub const fn zeroed() -> MaybeUninit<T>;
}
```
@joshlf
Copy link
Contributor

joshlf commented Mar 4, 2022

Is this waiting for anything before being stabilized?

@lilasta
Copy link
Contributor Author

lilasta commented Mar 6, 2022

Yes. This is waiting for const_ptr_write(#86302) and const_maybe_uninit_as_mut_ptr(#75251).

tgross35 added a commit to tgross35/rust that referenced this issue Sep 28, 2023
Make `MaybeUninit::zeroed` const stable. Newly stable API:

    // core::mem, std::mem
    impl<T> MaybeUninit<T> {
        pub const fn zeroed() -> MaybeUninit<T>;
    }

Tracking issue: rust-lang#91850
tgross35 added a commit to tgross35/rust that referenced this issue Sep 28, 2023
Make `MaybeUninit::zeroed` const stable. Newly stable API:

    // core::mem
    impl<T> MaybeUninit<T> {
        pub const fn zeroed() -> MaybeUninit<T>;
    }

Use of `const_mut_refs` should be acceptable since we do not leak the
mutability.

Tracking issue: rust-lang#91850
@dtolnay
Copy link
Member

dtolnay commented Nov 4, 2023

Could someone with a use case for this please help out with a compelling example for the docs in #116218 (review)? Thanks!

tgross35 added a commit to tgross35/rust that referenced this issue Nov 4, 2023
Make `MaybeUninit::zeroed` const stable. Newly stable API:

    // core::mem
    impl<T> MaybeUninit<T> {
        pub const fn zeroed() -> MaybeUninit<T>;
    }

Use of `const_mut_refs` should be acceptable since we do not leak the
mutability.

Tracking issue: rust-lang#91850
bors added a commit to rust-lang-ci/rust that referenced this issue Nov 5, 2023
…r=dtolnay

Stabilize `const_maybe_uninit_zeroed` and `const_mem_zeroed`

Make `MaybeUninit::zeroed` and `mem::zeroed` const stable. Newly stable API:

```rust
// core::mem
pub const unsafe fn zeroed<T>() ->;

impl<T> MaybeUninit<T> {
    pub const fn zeroed() -> MaybeUninit<T>;
}
```

This relies on features based around `const_mut_refs`. Per `@RalfJung,` this should be OK since we do not leak any `&mut` to the user.

For this to be possible, intrinsics `assert_zero_valid` and `assert_mem_uninitialized_valid` were made const stable.

Tracking issue: rust-lang#91850
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/.60const_mut_refs.60.20dependents

r? libs-api
`@rustbot` label -T-libs +T-libs-api +A-const-eval
cc `@RalfJung`  `@oli-obk` `@rust-lang/wg-const-eval`
@lilasta
Copy link
Contributor Author

lilasta commented Nov 5, 2023

da1e0d1

@lilasta lilasta closed this as completed Nov 5, 2023
intel-lab-lkp pushed a commit to intel-lab-lkp/linux that referenced this issue Dec 25, 2023
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

# Unstable features

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

# Other improvements

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

# Required changes

For this upgrade, no changes were required (i.e. on our side).

# `alloc` upgrade and reviewing

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux#2 [4]
Link: rust-lang/rust#96283 [5]
Signed-off-by: Miguel Ojeda <[email protected]>
fbq pushed a commit to Rust-for-Linux/linux that referenced this issue Dec 28, 2023
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

# Unstable features

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

# Other improvements

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

# Required changes

For this upgrade, no changes were required (i.e. on our side).

# `alloc` upgrade and reviewing

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: #2 [4]
Link: rust-lang/rust#96283 [5]
Signed-off-by: Miguel Ojeda <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Reviewed-by: Vincenzo Palazzo <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
ojeda added a commit to Rust-for-Linux/linux that referenced this issue Jan 22, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

# Unstable features

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

# Other improvements

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

# Required changes

For this upgrade, no changes were required (i.e. on our side).

# `alloc` upgrade and reviewing

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: #2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
bertschingert pushed a commit to bertschingert/bcachefs that referenced this issue Mar 4, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

# Unstable features

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

# Other improvements

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

# Required changes

For this upgrade, no changes were required (i.e. on our side).

# `alloc` upgrade and reviewing

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
jannau pushed a commit to jannau/linux that referenced this issue Mar 25, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
TommHeaven pushed a commit to TommHeaven/rust-for-linux that referenced this issue Apr 2, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4da06e ("rust: upgrade to Rust 1.68.2").

# Unstable features

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

# Other improvements

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

# Required changes

For this upgrade, no changes were required (i.e. on our side).

# `alloc` upgrade and reviewing

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
jannau pushed a commit to jannau/linux that referenced this issue Apr 8, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
herrnst pushed a commit to herrnst/linux-asahi that referenced this issue Apr 27, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
herrnst pushed a commit to herrnst/linux-asahi that referenced this issue Apr 27, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
herrnst pushed a commit to herrnst/linux-asahi that referenced this issue May 2, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
asahilina pushed a commit to AsahiLinux/linux that referenced this issue May 10, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
jannau pushed a commit to AsahiLinux/linux that referenced this issue May 22, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
herrnst pushed a commit to herrnst/linux-asahi that referenced this issue May 27, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
herrnst pushed a commit to herrnst/linux-asahi that referenced this issue May 30, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

For this upgrade, no changes were required (i.e. on our side).

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux/linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
JohnAZoidberg pushed a commit to FrameworkComputer/linux that referenced this issue Jun 1, 2024
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].

See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4 ("rust: upgrade to Rust 1.68.2").

# Unstable features

The `const_maybe_uninit_zeroed` unstable feature [3] was stabilized in
Rust 1.75.0, which we were using in the PHYLIB abstractions.

The only unstable features allowed to be used outside the `kernel` crate
are still `new_uninit,offset_of`, though other code to be upstreamed
may increase the list.

Please see [4] for details.

# Other improvements

Rust 1.75.0 stabilized `pointer_byte_offsets` [5] which we could
potentially use as an alternative for `ptr_metadata` in the future.

# Required changes

For this upgrade, no changes were required (i.e. on our side).

# `alloc` upgrade and reviewing

The vast majority of changes are due to our `alloc` fork being upgraded
at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1750-2023-12-28 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: rust-lang/rust#91850 [3]
Link: Rust-for-Linux#2 [4]
Link: rust-lang/rust#96283 [5]
Reviewed-by: Vincenzo Palazzo <[email protected]>
Reviewed-by: Martin Rodriguez Reboredo <[email protected]>
Tested-by: Boqun Feng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Miguel Ojeda <[email protected]>
(cherry picked from commit c5fed8c)
Signed-off-by: Paolo Pisati <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
C-tracking-issue Category: A tracking issue for an RFC or an unstable feature. T-libs-api Relevant to the library API team, which will review and decide on the PR/issue.
Projects
None yet
Development

No branches or pull requests

3 participants