Computer Science > Computation and Language
[Submitted on 15 Jul 2024]
Title:What distinguishes conspiracy from critical narratives? A computational analysis of oppositional discourse
View PDF HTML (experimental)Abstract:The current prevalence of conspiracy theories on the internet is a significant issue, tackled by many computational approaches. However, these approaches fail to recognize the relevance of distinguishing between texts which contain a conspiracy theory and texts which are simply critical and oppose mainstream narratives. Furthermore, little attention is usually paid to the role of inter-group conflict in oppositional narratives. We contribute by proposing a novel topic-agnostic annotation scheme that differentiates between conspiracies and critical texts, and that defines span-level categories of inter-group conflict. We also contribute with the multilingual XAI-DisInfodemics corpus (English and Spanish), which contains a high-quality annotation of Telegram messages related to COVID-19 (5,000 messages per language). We also demonstrate the feasibility of an NLP-based automatization by performing a range of experiments that yield strong baseline solutions. Finally, we perform an analysis which demonstrates that the promotion of intergroup conflict and the presence of violence and anger are key aspects to distinguish between the two types of oppositional narratives, i.e., conspiracy vs. critical.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.