Computer Science > Computation and Language
[Submitted on 1 Jul 2024 (v1), last revised 5 Oct 2024 (this version, v2)]
Title:MalAlgoQA: Pedagogical Evaluation of Counterfactual Reasoning in Large Language Models and Implications for AI in Education
View PDF HTML (experimental)Abstract:This paper introduces MalAlgoQA, a novel dataset designed to evaluate the counterfactual reasoning capabilities of Large Language Models (LLMs) through a pedagogical approach. The dataset comprises mathematics and reading comprehension questions, each accompanied by four answer choices and their corresponding rationales. At the heart of MalAlgoQA are ``malgorithms'' - rationales behind incorrect answer choices that represent flawed yet logically coherent reasoning paths. These malgorithms serve as counterfactual scenarios, allowing us to assess an LLM's ability to identify and analyze flawed reasoning patterns. We propose the Malgorithm Identification task, where LLMs are assessed based on their ability to identify corresponding malgorithm given an incorrect answer choice. To evaluate the model performance, we introduce two metrics: Algorithm Identification Accuracy (AIA) for correct answer rationale identification, and Malgorithm Identification Accuracy (MIA) for incorrect answer rationale identification. Our experiments reveal that state-of-the-art LLMs exhibit significant performance drops in MIA compared to AIA, highlighting the challenges in counterfactual reasoning. Surprisingly, we find that the chain-of-thought prompting technique not only fails to consistently enhance MIA but can sometimes lead to underperformance compared to simple prompting. These findings have important implications for developing LLMs with improved counterfactual reasoning, particularly relevant for AI-powered tutoring systems, where identifying and addressing student misconceptions is essential. MalAlgoQA dataset is available \href{this https URL}{here}.
Submission history
From: Shashank Sonkar [view email][v1] Mon, 1 Jul 2024 03:39:13 UTC (717 KB)
[v2] Sat, 5 Oct 2024 09:14:00 UTC (399 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.