Computer Science > Machine Learning
[Submitted on 7 Jun 2024]
Title:LinkGPT: Teaching Large Language Models To Predict Missing Links
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) have shown promising results on various language and vision tasks. Recently, there has been growing interest in applying LLMs to graph-based tasks, particularly on Text-Attributed Graphs (TAGs). However, most studies have focused on node classification, while the use of LLMs for link prediction (LP) remains understudied. In this work, we propose a new task on LLMs, where the objective is to leverage LLMs to predict missing links between nodes in a graph. This task evaluates an LLM's ability to reason over structured data and infer new facts based on learned patterns. This new task poses two key challenges: (1) How to effectively integrate pairwise structural information into the LLMs, which is known to be crucial for LP performance, and (2) how to solve the computational bottleneck when teaching LLMs to perform LP. To address these challenges, we propose LinkGPT, the first end-to-end trained LLM for LP tasks. To effectively enhance the LLM's ability to understand the underlying structure, we design a two-stage instruction tuning approach where the first stage fine-tunes the pairwise encoder, projector, and node projector, and the second stage further fine-tunes the LLMs to predict links. To address the efficiency challenges at inference time, we introduce a retrieval-reranking scheme. Experiments show that LinkGPT can achieve state-of-the-art performance on real-world graphs as well as superior generalization in zero-shot and few-shot learning, surpassing existing benchmarks. At inference time, it can achieve $10\times$ speedup while maintaining high LP accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.