Computer Science > Robotics
[Submitted on 6 Jun 2024 (v1), last revised 11 Oct 2024 (this version, v3)]
Title:RiskMap: A Unified Driving Context Representation for Autonomous Motion Planning in Urban Driving Environment
View PDF HTML (experimental)Abstract:Motion planning is a complicated task that requires the combination of perception, map information integration and prediction, particularly when driving in heavy traffic. Developing an extensible and efficient representation that visualizes sensor noise and provides basis to real-time planning tasks is desirable. We aim to develop an interpretable map representation, which offers prior of driving cost in planning tasks. In this way, we can simplify the planning process for dealing with complex driving scenarios and visualize sensor noise. Specifically, we propose a unified context representation empowered by deep neural networks. The unified representation is a differentiable risk field, which is an analytical representation of statistical cognition regarding traffic participants for downstream planning tasks. This representation method is nominated as RiskMap. A sampling-based planner is adopted to train and compare RiskMap generation methods. In this paper, the RiskMap generation tools and model structures are explored, the results illustrate that our method can improve driving safety and smoothness, and the limitation of our method is also discussed.
Submission history
From: Ren Xin [view email][v1] Thu, 6 Jun 2024 19:20:53 UTC (6,354 KB)
[v2] Wed, 18 Sep 2024 08:58:50 UTC (7,429 KB)
[v3] Fri, 11 Oct 2024 10:28:28 UTC (7,438 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.