Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 May 2024]
Title:FaceMixup: Enhancing Facial Expression Recognition through Mixed Face Regularization
View PDF HTML (experimental)Abstract:The proliferation of deep learning solutions and the scarcity of large annotated datasets pose significant challenges in real-world applications. Various strategies have been explored to overcome this challenge, with data augmentation (DA) approaches emerging as prominent solutions. DA approaches involve generating additional examples by transforming existing labeled data, thereby enriching the dataset and helping deep learning models achieve improved generalization without succumbing to overfitting. In real applications, where solutions based on deep learning are widely used, there is facial expression recognition (FER), which plays an essential role in human communication, improving a range of knowledge areas (e.g., medicine, security, and marketing). In this paper, we propose a simple and comprehensive face data augmentation approach based on mixed face component regularization that outperforms the classical DA approaches from the literature, including the MixAugment which is a specific approach for the target task in two well-known FER datasets existing in the literature.
Submission history
From: Fabio Augusto Faria [view email][v1] Thu, 30 May 2024 17:09:05 UTC (23,406 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.