Electrical Engineering and Systems Science > Systems and Control
[Submitted on 10 Apr 2024 (v1), last revised 16 Apr 2024 (this version, v2)]
Title:Structured Reinforcement Learning for Media Streaming at the Wireless Edge
View PDF HTML (experimental)Abstract:Media streaming is the dominant application over wireless edge (access) networks. The increasing softwarization of such networks has led to efforts at intelligent control, wherein application-specific actions may be dynamically taken to enhance the user experience. The goal of this work is to develop and demonstrate learning-based policies for optimal decision making to determine which clients to dynamically prioritize in a video streaming setting. We formulate the policy design question as a constrained Markov decision problem (CMDP), and observe that by using a Lagrangian relaxation we can decompose it into single-client problems. Further, the optimal policy takes a threshold form in the video buffer length, which enables us to design an efficient constrained reinforcement learning (CRL) algorithm to learn it. Specifically, we show that a natural policy gradient (NPG) based algorithm that is derived using the structure of our problem converges to the globally optimal policy. We then develop a simulation environment for training, and a real-world intelligent controller attached to a WiFi access point for evaluation. We empirically show that the structured learning approach enables fast learning. Furthermore, such a structured policy can be easily deployed due to low computational complexity, leading to policy execution taking only about 15$\mu$s. Using YouTube streaming experiments in a resource constrained scenario, we demonstrate that the CRL approach can increase quality of experience (QOE) by over 30\%.
Submission history
From: Archana Bura [view email][v1] Wed, 10 Apr 2024 19:25:51 UTC (1,021 KB)
[v2] Tue, 16 Apr 2024 22:32:34 UTC (1,027 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.