Computer Science > Computational Complexity
[Submitted on 29 Mar 2024 (v1), last revised 25 Apr 2024 (this version, v2)]
Title:Local Correction of Linear Functions over the Boolean Cube
View PDF HTML (experimental)Abstract:We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain $\{0,1\}^n$ over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance $1/2$ and we give local-correction algorithms correcting up to nearly $1/4$-fraction errors making $\widetilde{\mathcal{O}}(\log n)$ queries. This query complexity is optimal up to $\mathrm{poly}(\log\log n)$ factors. We also give local list-correcting algorithms correcting $(1/2 - \varepsilon)$-fraction errors with $\widetilde{\mathcal{O}}_{\varepsilon}(\log n)$ queries.
These results may be viewed as natural generalizations of the classical work of Goldreich and Levin whose work addresses the special case where the underlying group is $\mathbb{Z}_2$. By extending to the case where the underlying group is, say, the reals, we give the first non-trivial locally correctable codes (LCCs) over the reals (with query complexity being sublinear in the dimension (also known as message length)).
The central challenge in constructing the local corrector is constructing "nearly balanced vectors" over $\{-1,1\}^n$ that span $1^n$ -- we show how to construct $\mathcal{O}(\log n)$ vectors that do so, with entries in each vector summing to $\pm1$. The challenge to the local-list-correction algorithms, given the local corrector, is principally combinatorial, i.e., in proving that the number of linear functions within any Hamming ball of radius $(1/2-\varepsilon)$ is $\mathcal{O}_{\varepsilon}(1)$. Getting this general result covering every Abelian group requires integrating a variety of known methods with some new combinatorial ingredients analyzing the structural properties of codewords that lie within small Hamming balls.
Submission history
From: Amik Raj Behera [view email][v1] Fri, 29 Mar 2024 17:20:12 UTC (68 KB)
[v2] Thu, 25 Apr 2024 23:32:29 UTC (69 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.