Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2023 (v1), last revised 18 Sep 2024 (this version, v2)]
Title:GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction
View PDF HTML (experimental)Abstract:Accurate prediction of pedestrian trajectories is crucial for improving the safety of autonomous driving. However, this task is generally nontrivial due to the inherent stochasticity of human motion, which naturally requires the predictor to generate multi-modal prediction. Previous works leverage various generative methods, such as GAN and VAE, for pedestrian trajectory prediction. Nevertheless, these methods may suffer from mode collapse and relatively low-quality results. The denoising diffusion probabilistic model (DDPM) has recently been applied to trajectory prediction due to its simple training process and powerful reconstruction ability. However, current diffusion-based methods do not fully utilize input information and usually require many denoising iterations that lead to a long inference time or an additional network for initialization. To address these challenges and facilitate the use of diffusion models in multi-modal trajectory prediction, we propose GDTS, a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction. Considering the "goal-driven" characteristics of human motion, GDTS leverages goal estimation to guide the generation of the diffusion network. A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction. Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
Submission history
From: Ge Sun [view email][v1] Sat, 25 Nov 2023 03:55:06 UTC (5,475 KB)
[v2] Wed, 18 Sep 2024 12:39:06 UTC (7,362 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.