Computer Science > Information Retrieval
[Submitted on 19 Nov 2023]
Title:Dependency Relationships-Enhanced Attentive Group Recommendation in HINs
View PDFAbstract:Recommending suitable items to a group of users, commonly referred to as the group recommendation task, is becoming increasingly urgent with the development of group activities. The challenges within the group recommendation task involve aggregating the individual preferences of group members as the group's preferences and facing serious sparsity problems due to the lack of user/group-item interactions. To solve these problems, we propose a novel approach called Dependency Relationships-Enhanced Attentive Group Recommendation (DREAGR) for the recommendation task of occasional groups. Specifically, we introduce the dependency relationship between items as side information to enhance the user/group-item interaction and alleviate the interaction sparsity problem. Then, we propose a Path-Aware Attention Embedding (PAAE) method to model users' preferences on different types of paths. Next, we design a gated fusion mechanism to fuse users' preferences into their comprehensive preferences. Finally, we develop an attention aggregator that aggregates users' preferences as the group's preferences for the group recommendation task. We conducted experiments on two datasets to demonstrate the superiority of DREAGR by comparing it with state-of-the-art group recommender models. The experimental results show that DREAGR outperforms other models, especially HR@N and NDCG@N (N=5, 10), where DREAGR has improved in the range of 3.64% to 7.01% and 2.57% to 3.39% on both datasets, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.