Computer Science > Robotics
[Submitted on 16 Jun 2023 (v1), last revised 14 Dec 2023 (this version, v2)]
Title:Robot Learning with Sensorimotor Pre-training
View PDF HTML (experimental)Abstract:We present a self-supervised sensorimotor pre-training approach for robotics. Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens. Given a sequence of camera images, proprioceptive robot states, and actions, we encode the sequence into tokens, mask out a subset, and train a model to predict the missing content from the rest. We hypothesize that if a robot can predict the masked-out content it will have acquired a good model of the physical world that can enable it to act. RPT is designed to operate on latent visual representations which makes prediction tractable, enables scaling to larger models, and allows fast inference on a real robot. To evaluate our approach, we collected a dataset of 20,000 real-world trajectories over 9 months using a combination of motion planning and grasping algorithms. We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
Submission history
From: Ilija Radosavovic [view email][v1] Fri, 16 Jun 2023 17:58:10 UTC (4,439 KB)
[v2] Thu, 14 Dec 2023 16:56:39 UTC (1,620 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.