Statistics > Machine Learning
[Submitted on 17 May 2023]
Title:Optimal Weighted Random Forests
View PDFAbstract:The random forest (RF) algorithm has become a very popular prediction method for its great flexibility and promising accuracy. In RF, it is conventional to put equal weights on all the base learners (trees) to aggregate their predictions. However, the predictive performances of different trees within the forest can be very different due to the randomization of the embedded bootstrap sampling and feature selection. In this paper, we focus on RF for regression and propose two optimal weighting algorithms, namely the 1 Step Optimal Weighted RF (1step-WRF$_\mathrm{opt}$) and 2 Steps Optimal Weighted RF (2steps-WRF$_\mathrm{opt}$), that combine the base learners through the weights determined by weight choice criteria. Under some regularity conditions, we show that these algorithms are asymptotically optimal in the sense that the resulting squared loss and risk are asymptotically identical to those of the infeasible but best possible model averaging estimator. Numerical studies conducted on real-world data sets indicate that these algorithms outperform the equal-weight forest and two other weighted RFs proposed in existing literature in most cases.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.