Mathematics > Numerical Analysis
[Submitted on 23 Feb 2023 (v1), last revised 31 Aug 2023 (this version, v2)]
Title:Backpropagation through Back Substitution with a Backslash
View PDFAbstract:We present a linear algebra formulation of backpropagation which allows the calculation of gradients by using a generically written ``backslash'' or Gaussian elimination on triangular systems of equations. Generally, the matrix elements are operators. This paper has three contributions: (i) it is of intellectual value to replace traditional treatments of automatic differentiation with a (left acting) operator theoretic, graph-based approach; (ii) operators can be readily placed in matrices in software in programming languages such as Julia as an implementation option; (iii) we introduce a novel notation, ``transpose dot'' operator ``$\{\}^{T_\bullet}$'' that allows for the reversal of operators.
We further demonstrate the elegance of the operators approach in a suitable programming language consisting of generic linear algebra operators such as Julia \cite{bezanson2017julia}, and that it is possible to realize this abstraction in code. Our implementation shows how generic linear algebra can allow operators as elements of matrices. In contrast to ``operator overloading,'' where backslash would normally have to be rewritten to take advantage of operators, with ``generic programming'' there is no such need.
Submission history
From: Yuyang Wang [view email][v1] Thu, 23 Feb 2023 23:51:44 UTC (22,352 KB)
[v2] Thu, 31 Aug 2023 01:11:10 UTC (5,025 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.