Computer Science > Robotics
[Submitted on 10 Mar 2023 (v1), last revised 11 Oct 2023 (this version, v2)]
Title:Robotic Applications of Pre-Trained Vision-Language Models to Various Recognition Behaviors
View PDFAbstract:In recent years, a number of models that learn the relations between vision and language from large datasets have been released. These models perform a variety of tasks, such as answering questions about images, retrieving sentences that best correspond to images, and finding regions in images that correspond to phrases. Although there are some examples, the connection between these pre-trained vision-language models and robotics is still weak. If they are directly connected to robot motions, they lose their versatility due to the embodiment of the robot and the difficulty of data collection, and become inapplicable to a wide range of bodies and situations. Therefore, in this study, we categorize and summarize the methods to utilize the pre-trained vision-language models flexibly and easily in a way that the robot can understand, without directly connecting them to robot motions. We discuss how to use these models for robot motion selection and motion planning without re-training the models. We consider five types of methods to extract information understandable for robots, and show the results of state recognition, object recognition, affordance recognition, relation recognition, and anomaly detection based on the combination of these five methods. We expect that this study will add flexibility and ease-of-use, as well as new applications, to the recognition behavior of existing robots.
Submission history
From: Kento Kawaharazuka [view email][v1] Fri, 10 Mar 2023 02:55:50 UTC (5,850 KB)
[v2] Wed, 11 Oct 2023 08:54:22 UTC (5,864 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.