Mathematics > Numerical Analysis
[Submitted on 12 Sep 2022]
Title:A hybridizable discontinuous Galerkin method on unfitted meshes for single-phase Darcy flow in fractured porous media
View PDFAbstract:We present a novel hybridizable discontinuous Galerkin (HDG) method on unfitted meshes for single-phase Darcy flow in a fractured porous media. In particular we apply the HDG methodology to the recently introduced reinterpreted discrete fracture model (RDFM) [Xu & Yang, 2021 submitted] that use Dirac-$\delta$ functions to model both conductive and blocking fractures. Due to the use of Dirac-$\delta$ function approach for the fractures, our numerical scheme naturally allows for unfitted meshes with respect to the fractures, which is the major novelty of the proposed scheme. Moreover, the scheme is locally mass conservative and is relatively easy to implement comparing with existing work on the subject. In particular, our scheme is a simple modification of an existing regular Darcy flow HDG solver by adding the following two components: (i) locate the co-dimension one fractures in the background mesh and adding the appropriate surface integrals associated with these fractures into the stiffness matrix, (ii) adjust the penalty parameters on cells cut through conductive and blocking fractures (fractured cells).
Despite the simplicity of the proposed scheme, it performs extremely well for various benchmark test cases in both two- and three-dimensions. This is the first time that a truly unfitted finite element scheme been applied to complex fractured porous media flow problems in 3D with both blocking and conductive fractures without any restrictions on the meshes.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.