Computer Science > Machine Learning
[Submitted on 5 May 2022 (v1), last revised 29 Jul 2022 (this version, v2)]
Title:GreenDB: Toward a Product-by-Product Sustainability Database
View PDFAbstract:The production, shipping, usage, and disposal of consumer goods have a substantial impact on greenhouse gas emissions and the depletion of resources. Modern retail platforms rely heavily on Machine Learning (ML) for their search and recommender systems. Thus, ML can potentially support efforts towards more sustainable consumption patterns, for example, by accounting for sustainability aspects in product search or recommendations. However, leveraging ML potential for reaching sustainability goals requires data on sustainability. Unfortunately, no open and publicly available database integrates sustainability information on a product-by-product basis. In this work, we present the GreenDB, which fills this gap. Based on search logs of millions of users, we prioritize which products users care about most. The GreenDB schema extends the well-known this http URL Product definition and can be readily integrated into existing product catalogs to improve sustainability information available for search and recommendation experiences. We present our proof of concept implementation of a scraping system that creates the GreenDB dataset.
Submission history
From: Sebastian Jäger [view email][v1] Thu, 5 May 2022 20:24:16 UTC (193 KB)
[v2] Fri, 29 Jul 2022 09:02:02 UTC (112 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.