Mathematics > Combinatorics
[Submitted on 27 Aug 2020 (v1), last revised 8 Aug 2022 (this version, v2)]
Title:Synchronizing Times for $k$-sets in Automata
View PDFAbstract:An automaton is synchronizing if there is a word that maps all states onto the same state. Černý's conjecture on the length of the shortest such word is probably the most famous open problem in automata theory. We consider the closely related question of determining the minimum length of a word that maps $k$ states onto a single state. For synchronizing automata, we improve the upper bound on the minimum length of a word that sends some triple to a a single state from $0.5n^2$ to $\approx 0.19n^2$. We further extend this to an improved bound on the length of such a word for 4 states and 5 states. In the case of non-synchronizing automata, we give an example to show that the minimum length of a word that sends $k$ states to a single state can be as large as $\Theta\left(n^{k-1}\right)$.
Submission history
From: Natalie Behague [view email][v1] Thu, 27 Aug 2020 14:53:48 UTC (132 KB)
[v2] Mon, 8 Aug 2022 18:00:19 UTC (138 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.