Statistics > Methodology
[Submitted on 12 Apr 2018]
Title:A New Generative Statistical Model for Graphs: The Latent Order Logistic (LOLOG) Model
View PDFAbstract:Full probability models are critical for the statistical modeling of complex networks, and yet there are few general, flexible and widely applicable generative methods. We propose a new family of probability models motivated by the idea of network growth, which we call the Latent Order Logistic (LOLOG) model. LOLOG is a fully general framework capable of describing any probability distribution over graph configurations, though not all distributions are easily expressible or estimable as a LOLOG. We develop inferential procedures based on Monte Carlo Method of Moments, Generalized Method of Moments and variational inference. To show the flexibility of the model framework, we show how so-called scale-free networks can be modeled as LOLOGs via preferential attachment. The advantages of LOLOG in terms of avoidance of degeneracy, ease of sampling, and model flexibility are illustrated. Connections with the popular Exponential-family Random Graph model (ERGM) are also explored, and we find that they are identical in the case of dyadic independence. Finally, we apply the model to a social network of collaboration within a corporate law firm, a friendship network among adolescent students, and the friendship relations in an online social network.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.