Statistics > Applications
[Submitted on 4 May 2011 (v1), last revised 27 Sep 2011 (this version, v2)]
Title:MissForest - nonparametric missing value imputation for mixed-type data
View PDFAbstract:Modern data acquisition based on high-throughput technology is often facing the problem of missing data. Algorithms commonly used in the analysis of such large-scale data often depend on a complete set. Missing value imputation offers a solution to this problem. However, the majority of available imputation methods are restricted to one type of variable only: continuous or categorical. For mixed-type data the different types are usually handled separately. Therefore, these methods ignore possible relations between variable types. We propose a nonparametric method which can cope with different types of variables simultaneously. We compare several state of the art methods for the imputation of missing values. We propose and evaluate an iterative imputation method (missForest) based on a random forest. By averaging over many unpruned classification or regression trees random forest intrinsically constitutes a multiple imputation scheme. Using the built-in out-of-bag error estimates of random forest we are able to estimate the imputation error without the need of a test set. Evaluation is performed on multiple data sets coming from a diverse selection of biological fields with artificially introduced missing values ranging from 10% to 30%. We show that missForest can successfully handle missing values, particularly in data sets including different types of variables. In our comparative study missForest outperforms other methods of imputation especially in data settings where complex interactions and nonlinear relations are suspected. The out-of-bag imputation error estimates of missForest prove to be adequate in all settings. Additionally, missForest exhibits attractive computational efficiency and can cope with high-dimensional data.
Submission history
From: Daniel Stekhoven [view email][v1] Wed, 4 May 2011 13:53:59 UTC (40 KB)
[v2] Tue, 27 Sep 2011 14:01:38 UTC (43 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.