Document Open Access Logo

The Parameterised Complexity of Computing the Maximum Modularity of a Graph

Authors Kitty Meeks, Fiona Skerman



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2018.9.pdf
  • Filesize: 0.49 MB
  • 14 pages

Document Identifiers

Author Details

Kitty Meeks
  • School of Computing Science, University of Glasgow, Glasgow, UK
Fiona Skerman
  • Department of Mathematics, Uppsala University, Uppsala, Sweden

Cite AsGet BibTex

Kitty Meeks and Fiona Skerman. The Parameterised Complexity of Computing the Maximum Modularity of a Graph. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.IPEC.2018.9

Abstract

The maximum modularity of a graph is a parameter widely used to describe the level of clustering or community structure in a network. Determining the maximum modularity of a graph is known to be NP-complete in general, and in practice a range of heuristics are used to construct partitions of the vertex-set which give lower bounds on the maximum modularity but without any guarantee on how close these bounds are to the true maximum. In this paper we investigate the parameterised complexity of determining the maximum modularity with respect to various standard structural parameterisations of the input graph G. We show that the problem belongs to FPT when parameterised by the size of a minimum vertex cover for G, and is solvable in polynomial time whenever the treewidth or max leaf number of G is bounded by some fixed constant; we also obtain an FPT algorithm, parameterised by treewidth, to compute any constant-factor approximation to the maximum modularity. On the other hand we show that the problem is W[1]-hard (and hence unlikely to admit an FPT algorithm) when parameterised simultaneously by pathwidth and the size of a minimum feedback vertex set.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • modularity
  • community detection
  • integer quadratic programming
  • vertex cover
  • pathwidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. P. Bagrow. Communities and bottlenecks: Trees and treelike networks have high modularity. Physical Review E, 85(6):066118, 2012. Google Scholar
  2. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008. Google Scholar
  3. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On Modularity Clustering. IEEE Trans. on Knowl. and Data Eng., 20(2):172-188, February 2008. URL: http://dx.doi.org/10.1109/TKDE.2007.190689.
  4. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, Cham, 2015. Google Scholar
  5. B. DasGupta and D. Desai. On the complexity of Newman’s community finding approach for biological and social networks. Journal of Computer and System Sciences, 79(1):50-67, 2013. URL: http://dx.doi.org/10.1016/j.jcss.2012.04.003.
  6. F. De Montgolfier, M. Soto, and L. Viennot. Asymptotic modularity of some graph classes. In Algorithms and Computation, pages 435-444. Springer, 2011. Google Scholar
  7. T. N. Dinh, X. Li, and M. T. Thai. Network Clustering via Maximizing Modularity: Approximation Algorithms and Theoretical Limits. In 2015 IEEE International Conference on Data Mining, pages 101-110, November 2015. URL: http://dx.doi.org/10.1109/ICDM.2015.139.
  8. T. N. Dinh and M. T. Thai. Finding community structure with performance guarantees in scale-free networks. In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on, pages 888-891. IEEE, 2011. Google Scholar
  9. T. N. Dinh and M. T. Thai. Community Detection in Scale-Free Networks: Approximation Algorithms for Maximizing Modularity. IEEE Journal on Selected Areas in Communications, 31(6):997-1006, June 2013. URL: http://dx.doi.org/10.1109/JSAC.2013.130602.
  10. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer London, 2013. Google Scholar
  11. R. Enciso, M. R. Fellows, J. Guo, I. Kanj, F. Rosamond, and O. Suchý. What Makes Equitable Connected Partition Easy, pages 122-133. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. URL: http://dx.doi.org/10.1007/978-3-642-11269-0_10.
  12. V. Estivill-Castro, M. Fellows, M. Langston, and F. Rosamond. FPT is P-time extremal structure I. In Algorithms and Complexity in Durham 2005, Proceedings of the first ACiD Workshop, volume 4 of Texts in Algorithmics, pages 1-41. King’s College Publications, 2005. Google Scholar
  13. S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75-174, 2010. Google Scholar
  14. S. Fortunato and D. Hric. Community detection in networks: A user guide. Physics Reports, 659:1-44, 2016. Google Scholar
  15. I. S. Jutla, L. G. S. Jeub, and P. J. Mucha. A generalized Louvain method for community detection implemented in MATLAB. URL http://netwiki.amath.unc.edu/GenLouvain, 2011. Google Scholar
  16. Y. Kawase, T. Matsui, and A. Miyauchi. Additive Approximation Algorithms for Modularity Maximization. In Seok-Hee Hong, editor, 27th International Symposium on Algorithms and Computation (ISAAC 2016), volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1-43:13, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.43.
  17. A. Lancichinetti and S. Fortunato. Limits of modularity maximization in community detection. Physical Review E, 84(6):066122, 2011. Google Scholar
  18. D. Lokshtanov. Parameterized Integer Quadratic Programming: Variables and Coefficients. arXiv:1511.00310 [cs.DS], 2015. Google Scholar
  19. C. McDiarmid and F. Skerman. Modularity of regular and treelike graphs. Journal of Complex Networks, 5, 2017. Google Scholar
  20. C. McDiarmid and F. Skerman. Modularity of Erdős-Rényi Random Graphs. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, volume 1, 2018. Google Scholar
  21. C. McDiarmid and F. Skerman. Modularity of Erdős-Rényi random graphs. arXiv:1808.02243 [math.CO], 2018. Google Scholar
  22. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69(2):026113, 2004. Google Scholar
  23. M. Porter, J.-P. Onnela, and P. Mucha. Communities in networks. Notices of the AMS, 56(9):1082-1097, 2009. Google Scholar
  24. L. O. Prokhorenkova, P. Prałat, and A. Raigorodskii. Modularity of models of complex networks. Electronic Notes in Discrete Mathematics, 61:947-953, 2017. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail