Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention
DOI:
https://doi.org/10.1609/aaai.v36i3.20176Keywords:
Computer Vision (CV)Abstract
Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by the global self-attention, various methods constrain the range of attention within a local region to improve its efficiency. Consequently, their receptive fields in a single attention layer are not large enough, resulting in insufficient context modeling. To address this issue, we propose a Pale-Shaped self-Attention (PS-Attention), which performs self-attention within a pale-shaped region. Compared to the global self-attention, PS-Attention can reduce the computation and memory costs significantly. Meanwhile, it can capture richer contextual information under the similar computation complexity with previous local self-attention mechanisms. Based on the PS-Attention, we develop a general Vision Transformer backbone with a hierarchical architecture, named Pale Transformer, which achieves 83.4%, 84.3%, and 84.9% Top-1 accuracy with the model size of 22M, 48M, and 85M respectively for 224x224 ImageNet-1K classification, outperforming the previous Vision Transformer backbones. For downstream tasks, our Pale Transformer backbone performs better than the recent state-of-the-art CSWin Transformer by a large margin on ADE20K semantic segmentation and COCO object detection & instance segmentation. The code will be released on https://github.com/BR-IDL/PaddleViT.Downloads
Published
2022-06-28
How to Cite
Wu, S., Wu, T., Tan, H., & Guo, G. (2022). Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention. Proceedings of the AAAI Conference on Artificial Intelligence, 36(3), 2731-2739. https://doi.org/10.1609/aaai.v36i3.20176
Issue
Section
AAAI Technical Track on Computer Vision III