Learning to Copy Coherent Knowledge for Response Generation
DOI:
https://doi.org/10.1609/aaai.v35i14.17486Keywords:
Conversational AI/Dialog SystemsAbstract
Knowledge-driven dialog has shown remarkable performance to alleviate the problem of generating uninformative responses in the dialog system. However, incorporating knowledge coherently and accurately into response generation is still far from being solved. Previous works dropped into the paradigm of non-goal-oriented knowledge-driven dialog, they are prone to ignore the effect of dialog goal, which has potential impacts on knowledge exploitation and response generation. To address this problem, this paper proposes a Goal-Oriented Knowledge Copy network, GOKC. Specifically, a goal-oriented knowledge discernment mechanism is designed to help the model discern the knowledge facts that are highly correlated to the dialog goal and the dialog context. Besides, a context manager is devised to copy facts not only from the discerned knowledge but also from the dialog goal and the dialog context, which allows the model to accurately restate the facts in the generated response. The empirical studies are conducted on two benchmarks of goal-oriented knowledge-driven dialog generation. The results show that our model can significantly outperform several state-of-the-art models in terms of both automatic evaluation and human judgments.Downloads
Published
2021-05-18
How to Cite
Bai, J., Yang, Z., Liang, X., Wang, W., & Li, Z. (2021). Learning to Copy Coherent Knowledge for Response Generation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14), 12535-12543. https://doi.org/10.1609/aaai.v35i14.17486
Issue
Section
AAAI Technical Track on Speech and Natural Language Processing I