Skip to main content

Maximin Share Based Mechanisms for Multi-resource Fair Allocation with Divisible and Indivisible Tasks

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1693))

Included in the following conference series:

Abstract

Finding a fair and efficient allocation is an important issue in cloud computing systems. In this paper, we propose a maximin share (MMS) based mechanism for the divisible case which satisfies Pareto efficiency, envy-freeness, sharing incentive and group strategy-proofness. We also propose a MMS based mechanism for the indivisible case which satisfies Pareto efficiency, envy-free up to one bundle and sharing incentive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Budish, E.: The combinatorial assignment problem: approximate competitive equilibrium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

    Article  Google Scholar 

  2. Bonald, T., Roberts, J.: Enhanced cluster computing performance through proportional fairness. Perform. Eval. 79, 134–145 (2014)

    Article  Google Scholar 

  3. Dolev, D., Feitelson, D., Halpern, J., Kupferman, R., Linial, N.: No justified complaints: on fair sharing of multiple resources. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 68–75. ACM, Massachusetts (2012)

    Google Scholar 

  4. Friedman, E., Ghodsi, A., Psomas, C.-A.: Strategyproof allocation of discrete jobs on multiple machines. In: Proceedings of the Fifteenth ACM Conference on Economics and Computation, pp. 529–546. ACM, New York (2014)

    Google Scholar 

  5. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant resource fairness: fair allocation of multiple resource types. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, p. 24 (2011)

    Google Scholar 

  6. Kash, I., Procaccia, A., Shah, N.: No agent left behind: dynamic fair division of multiple resources. J. Artif. Intell. Res. 51, 579–603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kurokawa, D., Procaccia, A.D., Wang, J.: Fair enough: guaranteeing approximate maximin shares. J. ACM. 65(2), 1–27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, B., Li, M., Zhang, R.: Fair scheduling for time-dependent resources. Adv. Neural Inf. Process. Syst. 34, 21744–21756 (2021)

    Google Scholar 

  9. Li, J., Zhang, J., Li, W., Zhang, X.: A fair distribution strategy based on shared fair and time-varying resource demand. J. Comput. Res. Dev. 56(7), 1534–1544 (2019)

    Google Scholar 

  10. Li, W., Liu, X., Zhang, X., Zhang, X.: Dynamic fair allocation of multiple resources with bounded number of tasks in cloud computing systems. Multiagent Grid Syst. 11(4), 245–257 (2015)

    Article  Google Scholar 

  11. Li, Weidong, Liu, Xi., Zhang, Xiaolu, Zhang, Xuejie: A further analysis of the dynamic dominant resource fairness mechanism. In: Xiao, Mingyu, Rosamond, Frances (eds.) FAW 2017. LNCS, vol. 10336, pp. 163–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59605-1_15

    Chapter  Google Scholar 

  12. Li, Weidong, Liu, Xi., Zhang, Xiaolu, Zhang, Xuejie: Multi-resource fair allocation with bounded number of tasks in cloud computing systems. In: Du, Dingzhu, Li, Lian, Zhu, En., He, Kun (eds.) NCTCS 2017. CCIS, vol. 768, pp. 3–17. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6893-5_1

    Chapter  Google Scholar 

  13. Liu, X., Zhang, X., Zhang, X., Li, W.: Dynamic fair division of multiple resources with satiable agents in cloud computing systems. In: IEEE Fifth International Conference on Big Data and Cloud Computing, pp. 131–136. IEEE, Dalian (2015)

    Google Scholar 

  14. Liu, X., Zhang, X., Li, W., Zhang, X.: Swarm optimization algorithms applied to multi-resource fair allocation in heterogeneous cloud computing systems. Computing 99(12), 1231–1255 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Xi., Zhang, Xiaolu, Li, Weidong, Zhang, Xuejie: Discrete interior search algorithm for multi-resource fair allocation in heterogeneous cloud computing systems. In: Huang, De-Shuang., Bevilacqua, Vitoantonio, Premaratne, Prashan (eds.) ICIC 2016. LNCS, vol. 9771, pp. 615–626. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42291-6_61

    Chapter  Google Scholar 

  16. Liu, X., Li, W., Zhang, X.: Strategy-proof mechanism for provisioning and allocation virtual machines in heterogeneous clouds. IEEE Trans. Parallel Distrib. Syst. 29(7), 1650–1663 (2017)

    Article  Google Scholar 

  17. Moulin, H.: REF: Fair Division and Collective Welfare. MIT press, London (2004)

    Google Scholar 

  18. Parkes, D., Procaccia, A., Shah, N.: Beyond dominant resource fairness: extensions, limitations, and indivisibilities. ACM Trans. Econ. Comput. 3(1), 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  19. Wang, W., Liang, B., Li, B.: Multi-resource fair allocation in heterogeneous cloud computing systems. IEEE Trans. Parallel Distrib. Syst. 26(10), 2822–2835 (2015)

    Article  Google Scholar 

  20. Wang, H., Varman, P.: Balancing fairness and efficiency in tiered storage systems with bottleneck-aware allocation. In: 12th USENIX Conference on File and Storage Technologies, pp. 229–242 (2014)

    Google Scholar 

  21. Wang, W., Li, B., Liang, B., Li, J.: Towards multi-resource fair allocation with placement constraints. In: Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pp. 415–416. ACM, Antibes Juan-les-Pins (2016)

    Google Scholar 

  22. Zahedi, S., Le, B.: REF: resource elasticity fairness with sharing incentives for multiprocessors. ACM SIGPLAN Not. 49(4), 145–160 (2014)

    Article  Google Scholar 

  23. Zhang, Xuejie, Li, Jie, Li, Guibing, Li, Weidong: Generalized asset fairness mechanism for multi-resource fair allocation mechanism with two different types of resources. Cluster Comput. 25, 3389–3403 (2022). https://doi.org/10.1007/s10586-022-03548-9

    Article  Google Scholar 

  24. Zhang, J., Chi, L., Xie, N., Yang, X., Zhang, X., Li, W.: Strategy-proof mechanism for online resource allocation in cloud and edge collaboration. Computing 104(2), 383–412 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Xie, N., Zhang, X., Yue, K., Li, W., Kumar, D.: Machine learning based resource allocation of cloud computing in auction. Comput. Mater. Continua 56(1), 123–135 (2018)

    Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Natural Science Foundation of China [No. 12071417].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, B., Li, W. (2022). Maximin Share Based Mechanisms for Multi-resource Fair Allocation with Divisible and Indivisible Tasks. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics