Skip to main content

Multi-resource Allocation in Mobile Edge Computing Systems: A Trade-Off on Fairness and Efficiency

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Abstract

Fairness and efficiency are two important goals of multi-resource allocation in mobile edge computing systems. We model the system as a shared computing system consisting of multiple servers, where user tasks have placement constraints and link bandwidth resources are independent of servers. For this model, we propose a mechanism, soft task share fairness - max-min efficiency (TSF-MME), to capture the trade-off between efficiency and fairness in multi-resource allocation. TSF-MME consists of \(\alpha \) task share fairness mechanism (\(\alpha \)-TSF) and max-min efficiency mechanism (MME). Compared with absolute fairness, TSF-MME can guarantee soft fairness of no less than \(\alpha \) times. The lower bound of \(\alpha \) is an adjustable value that can be set according to the fairness threshold that managers want to guarantee. Meanwhile, TSF-MME can maximize and directly display the overall efficiency of the system. Then, we design an algorithm to find the allocation of TSF-MME. Rigorous proof shows that TSF-MME satisfies soft fairness, soft sharing incentive, Pareto optimality and envy-freeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poullie, P., Bocek, T., Stiller, B.: A survey of the state-of-the-art in fair multi-resource allocations for data centers. IEEE Trans. Netw. Serv. Manage. 15(1), 169–183 (2017)

    Article  Google Scholar 

  2. Liu, X., Zhang, X., Cui, Q., Li, W.: Implementation of ant colony optimization combined with tabu search for multi-resource fair allocation in heterogeneous cloud computing. In: 2017 IEEE 3rd International Conference on Big Data Security on Cloud (Bigdatasecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), pp. 196–201 (2017)

    Google Scholar 

  3. Li, W., Liu, X., Zhang, X., Zhang, X.: Dynamic fair allocation of multiple resources with bounded number of tasks in cloud computing systems. Multiagent Grid Syst. 11(4), 245–257 (2015)

    Article  Google Scholar 

  4. Liu, X., Zhang, X., Zhang, X., Li, W.: Dynamic fair division of multiple resources with satiable agents in cloud computing systems. In: 2015 IEEE Fifth International Conference on Big Data and Cloud Computing, pp. 131–136 (2015)

    Google Scholar 

  5. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant resource fairness: fair allocation of multiple resource types. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, pp. 323–336 (2011)

    Google Scholar 

  6. Li, J., Zhang, J., Li, W., Zhang, X.: A fair distribution strategy based on shared fair and time-varying resource demand. J. Comput. Res. Dev. 56(7), 1534 (2019)

    Google Scholar 

  7. Liu, X., Zhang, X., Li, W., Zhang, X.: Discrete interior search algorithm for multi-resource fair allocation in heterogeneous cloud computing systems. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 615–626. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42291-6_61

    Chapter  Google Scholar 

  8. Li, W., Liu, X., Zhang, X., Zhang, X.: A further analysis of the dynamic dominant resource fairness mechanism. In: Xiao, M., Rosamond, F. (eds.) FAW 2017. LNCS, vol. 10336, pp. 163–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59605-1_15

    Chapter  Google Scholar 

  9. Khamse-Ashari, J., Lambadaris, I., Kesidis, G., Urgaonkar, B., Zhao, Y.: An efficient and fair multi-resource allocation mechanism for heterogeneous servers. IEEE Trans. Parallel Distrib. Syst. 29(12), 2686–2699 (2018)

    Article  Google Scholar 

  10. Tang, S., Yu, C., Li, Y.: Fairness-efficiency scheduling for cloud computing with soft fairness guarantees. IEEE Trans. Cloud Comput. (2020)

    Google Scholar 

  11. Liu, F., Tang, G., Li, Y., Cai, Z., Zhang, X., Zhou, T.: A survey on edge computing systems and tools. Proc. IEEE 107(8), 1537–1562 (2019)

    Article  Google Scholar 

  12. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multiresource allocation: Fairness–efficiency tradeoffs in a unifying framework. IEEE/ACM Trans. Netw. 21(6), 1785–1798 (2013)

    Article  Google Scholar 

  13. Jiang, S., Wu, J.: Multi-resource allocation in cloud data centers: a trade-off on fairness and efficiency. Concurr. Comput. Pract. Exp. 33(6), 6061 (2021)

    Article  MathSciNet  Google Scholar 

  14. Wang, W., Liang, B., Li, B.: On fairness-efficiency tradeoffs for multi-resource packet processing. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops, pp. 244–249 (2013)

    Google Scholar 

  15. Meskar, E., Liang, B.: Fair multi-resource allocation with external resource for mobile edge computing. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 184–189 (2018)

    Google Scholar 

  16. Sharma, B., Chudnovsky, V., Hellerstein, J.L., Rifaat, R., Das, C.R.: Modeling and synthesizing task placement constraints in google compute clusters. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, pp. 1–14 (2011)

    Google Scholar 

  17. Wang, W., Li, B., Liang, B., Li, J.: Multi-resource fair sharing for datacenter jobs with placement constraints. In: SC 2016: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1003–1014 (2016)

    Google Scholar 

  18. Wang, W., Liang, B., Li, B.: Multi-resource fair allocation in heterogeneous cloud computing systems. IEEE Trans. Parallel Distrib. Syst. 26(10), 2822–2835 (2015)

    Article  Google Scholar 

  19. Sadok, H., Campista, M.E.M., Costa, L.H.M.K.: Stateful DRF: considering the past in a multi-resource allocation. IEEE Trans. Comput. 70(7), 1094–1105 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, W., Liu, X., Zhang, X., Zhang, X.: Multi-resource fair allocation with bounded number of tasks in cloud computing systems. In: Du, D., Li, L., Zhu, E., He, K. (eds.) NCTCS 2017. CCIS, vol. 768, pp. 3–17. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6893-5_1

    Chapter  Google Scholar 

  21. Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Choosy: max-min fair sharing for datacenter jobs with constraints. In: Proceedings of the 8th ACM European Conference on Computer Systems, pp. 365–378 (2013)

    Google Scholar 

  22. Sallam, G., Ji, B.: Joint placement and allocation of VNF nodes with budget and capacity constraints. IEEE/ACM Trans. Netw. 29(3), 1238–1251 (2021)

    Article  Google Scholar 

  23. Zhang, X., Li, J., Li, G., Li, W.: Generalized asset fairness mechanism for multi-resource fair allocation mechanism with two different types of resources. Clust. Comput. 25, 3389–3403 (2022). https://doi.org/10.1007/s10586-022-03548-9

    Article  Google Scholar 

  24. Zhang, X., Xi, L., Li, W., Zhang, X.: Dynamic fair allocation of multi-resources based on shared resource quantity. J. Commun. 37(7), 151 (2016)

    Google Scholar 

  25. Liu, X., Zhang, X., Li, W., Zhang, X.: Swarm optimization algorithms applied to multi-resource fair allocation in heterogeneous cloud computing systems. Computing 99(12), 1231–1255 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chakraborty, M., Igarashi, A., Suksompong, W., Zick, Y.: Weighted envy-freeness in indivisible item allocation. ACM Trans. Econ. Comput. 9(3), 1–39 (2021)

    Article  MathSciNet  Google Scholar 

  27. Wei, W., Li, B., Liang, B., Li, J.: Towards multi-resource fair allocation with placement constraints. ACM SIGMETRICS Perform. Eval. Rev. 44(1), 415–416 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China [Nos. 12071417, 61762091 and 62062065].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Li, W., Zhang, X. (2022). Multi-resource Allocation in Mobile Edge Computing Systems: A Trade-Off on Fairness and Efficiency. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics