Abstract
We present novel approaches to detect cardinality constraints expressed in CNF. The first approach is based on a syntactic analysis of specific data structures used in SAT solvers to represent binary and ternary clauses, whereas the second approach is based on a semantic analysis by unit propagation. The syntactic approach computes an approximation of the cardinality constraints AtMost-1 and AtMost-2 constraints very fast, whereas the semantic approach has the property to be generic, i.e. it can detect cardinality constraints AtMost-k for any k, at a higher computation cost. Our experimental results suggest that both approaches are efficient at recovering AtMost-1 and AtMost-2 cardinality constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ilp versus specialized 0-1 ilp: An update. In: Pileggi, L.T., Kuehlmann, A. (eds.) ICCAD, pp. 450–457. ACM (2002)
Ansótegui, C., Larrubia, J., Li, C.M., Manyà, F.: Exploiting multivalued knowledge in variable selection heuristics for sat solvers. Ann. Math. Artif. Intell. 49(1-4), 191–205 (2007)
Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to problems with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)
Ansótegui Gil, C.J.: Complete SAT solvers for Many-Valued CNF Formulas. Ph.D. thesis. University of Lleida (2004)
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009)
Bailleux, O., Boufkhad, Y.: Efficient cnf encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)
Barahona, P., Hölldobler, S., Nguyen, V.-H.: Representative Encodings to Translate Finite CSPs into SAT. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 251–267. Springer, Heidelberg (2014)
Barth, P.: Linear 0-1 inequalities and extended clauses. In: Voronkov, A. (ed.) LPAR 1993. LNCS, vol. 698, pp. 40–51. Springer, Heidelberg (1993)
Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and cnf encodings of cardinality constraints. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 397–409. Springer, Heidelberg (2012)
Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2013. Solver and Benchmark Descriptions, vol. B-2013-1, pp. 51–52. University of Helsinki, Department of Computer Science Series of Publications B (2013)
Chen, J.C.: A new sat encoding of the at-most-one constraint. In: Proc. of the Tenth Int. Workshop of Constraint Modelling and Reformulation (2010)
Cook, W., Coullard, C., Turán, G.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18(1), 25–38 (1987)
Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT 2(1-4), 1–26 (2006)
Frisch, A., Giannaros, P.: Sat encodings of the at-most-k constraint: Some old, some new, some fast, some slow. In: Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation, ModRef 2010 (2010)
Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form descriptions. In: VLSI Design, pp. 37–42. IEEE Computer Society (2007)
Van Gelder, A., Spence, I.: Zero-one designs produce small hard sat instances. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 388–397. Springer, Heidelberg (2010)
Gent, I.P., Nightingale, P.: A new encoding of alldifferent into sat. In: Proc. 3rd International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp. 95–110 (2004)
Gent, I., Prosser, P., Smith, B.: A 0/1 encoding of the gaclex constraint for pairs of vectors. In: ECAI 2002 workshop W9: Modelling and Solving Problems with Constraints. University of Glasgow (2002)
Haken, A.: The intractability of resolution. Theoretical Computer Science 39(0), 297–308 (1985)
Hölldobler, S., Nguyen, V.H.: On SAT-Encodings of the At-Most-One Constraint. In: Katsirelos, G., Quimper, C.G. (eds.) Proc. The Twelfth International Workshop on Constraint Modelling and Reformulation, Uppsala, Sweden, September 16-20, pp. 1–17 (2013)
Hooker, J.N.: Generalized resolution and cutting planes. Ann. Oper. Res. 12(1-4), 217–239 (1988)
Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J., Bohlinger, J. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, US (1972)
Klieber, W., Kwon, G.: Efficient cnf encoding for selecting 1 from n objects. In: International Workshop on Constraints in Formal Verification (2007)
van Lambalgen, M.: 3MCard 3MCard A Lookahead Cardinality Solver. Master’s thesis. Delft University of Technology (2006)
Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electronic Notes in Discrete Mathematics 9, 59–80 (2001)
Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)
Manthey, N., Steinke, P.: Quadratic direct encoding vs. linear order encoding, a one-out-of-n transformation on cnf. In: Proceedings of the First International Workshop on the Cross-Fertilization Between CSP and SAT, CSPSAT11 (2011)
Martins, R., Manquinho, V.M., Lynce, I.: Parallel search for maximum satisfiability. AI Commun. 25(2), 75–95 (2012)
Mikša, M., Nordström, J.: Long proofs of (Seemingly) simple formulas. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 122–138. Springer, Heidelberg (2014)
Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from cnf formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)
Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)
Spence, I.: sgen1: A generator of small but difficult satisfiability benchmarks. ACM Journal of Experimental Algorithmics 15 (2010)
Walsh, T.: Sat v csp. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)
Weaver, S.: Satisfiability Advancements Enabled by State Machines. Ph.D. thesis. University of Cincinnati (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Biere, A., Le Berre, D., Lonca, E., Manthey, N. (2014). Detecting Cardinality Constraints in CNF. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)