Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

We present novel approaches to detect cardinality constraints expressed in CNF. The first approach is based on a syntactic analysis of specific data structures used in SAT solvers to represent binary and ternary clauses, whereas the second approach is based on a semantic analysis by unit propagation. The syntactic approach computes an approximation of the cardinality constraints AtMost-1 and AtMost-2 constraints very fast, whereas the semantic approach has the property to be generic, i.e. it can detect cardinality constraints AtMost-k for any k, at a higher computation cost. Our experimental results suggest that both approaches are efficient at recovering AtMost-1 and AtMost-2 cardinality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ilp versus specialized 0-1 ilp: An update. In: Pileggi, L.T., Kuehlmann, A. (eds.) ICCAD, pp. 450–457. ACM (2002)

    Google Scholar 

  2. Ansótegui, C., Larrubia, J., Li, C.M., Manyà, F.: Exploiting multivalued knowledge in variable selection heuristics for sat solvers. Ann. Math. Artif. Intell. 49(1-4), 191–205 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to problems with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Ansótegui Gil, C.J.: Complete SAT solvers for Many-Valued CNF Formulas. Ph.D. thesis. University of Lleida (2004)

    Google Scholar 

  5. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Bailleux, O., Boufkhad, Y.: Efficient cnf encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Barahona, P., Hölldobler, S., Nguyen, V.-H.: Representative Encodings to Translate Finite CSPs into SAT. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 251–267. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Barth, P.: Linear 0-1 inequalities and extended clauses. In: Voronkov, A. (ed.) LPAR 1993. LNCS, vol. 698, pp. 40–51. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and cnf encodings of cardinality constraints. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 397–409. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2013. Solver and Benchmark Descriptions, vol. B-2013-1, pp. 51–52. University of Helsinki, Department of Computer Science Series of Publications B (2013)

    Google Scholar 

  11. Chen, J.C.: A new sat encoding of the at-most-one constraint. In: Proc. of the Tenth Int. Workshop of Constraint Modelling and Reformulation (2010)

    Google Scholar 

  12. Cook, W., Coullard, C., Turán, G.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18(1), 25–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT 2(1-4), 1–26 (2006)

    MATH  Google Scholar 

  14. Frisch, A., Giannaros, P.: Sat encodings of the at-most-k constraint: Some old, some new, some fast, some slow. In: Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation, ModRef 2010 (2010)

    Google Scholar 

  15. Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form descriptions. In: VLSI Design, pp. 37–42. IEEE Computer Society (2007)

    Google Scholar 

  16. Van Gelder, A., Spence, I.: Zero-one designs produce small hard sat instances. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 388–397. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Gent, I.P., Nightingale, P.: A new encoding of alldifferent into sat. In: Proc. 3rd International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp. 95–110 (2004)

    Google Scholar 

  18. Gent, I., Prosser, P., Smith, B.: A 0/1 encoding of the gaclex constraint for pairs of vectors. In: ECAI 2002 workshop W9: Modelling and Solving Problems with Constraints. University of Glasgow (2002)

    Google Scholar 

  19. Haken, A.: The intractability of resolution. Theoretical Computer Science 39(0), 297–308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hölldobler, S., Nguyen, V.H.: On SAT-Encodings of the At-Most-One Constraint. In: Katsirelos, G., Quimper, C.G. (eds.) Proc. The Twelfth International Workshop on Constraint Modelling and Reformulation, Uppsala, Sweden, September 16-20, pp. 1–17 (2013)

    Google Scholar 

  21. Hooker, J.N.: Generalized resolution and cutting planes. Ann. Oper. Res. 12(1-4), 217–239 (1988)

    Article  MathSciNet  Google Scholar 

  22. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J., Bohlinger, J. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, US (1972)

    Chapter  Google Scholar 

  23. Klieber, W., Kwon, G.: Efficient cnf encoding for selecting 1 from n objects. In: International Workshop on Constraints in Formal Verification (2007)

    Google Scholar 

  24. van Lambalgen, M.: 3MCard 3MCard A Lookahead Cardinality Solver. Master’s thesis. Delft University of Technology (2006)

    Google Scholar 

  25. Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electronic Notes in Discrete Mathematics 9, 59–80 (2001)

    Article  Google Scholar 

  26. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Manthey, N., Steinke, P.: Quadratic direct encoding vs. linear order encoding, a one-out-of-n transformation on cnf. In: Proceedings of the First International Workshop on the Cross-Fertilization Between CSP and SAT, CSPSAT11 (2011)

    Google Scholar 

  28. Martins, R., Manquinho, V.M., Lynce, I.: Parallel search for maximum satisfiability. AI Commun. 25(2), 75–95 (2012)

    MathSciNet  Google Scholar 

  29. Mikša, M., Nordström, J.: Long proofs of (Seemingly) simple formulas. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 122–138. Springer, Heidelberg (2014)

    Google Scholar 

  30. Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from cnf formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  31. Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Spence, I.: sgen1: A generator of small but difficult satisfiability benchmarks. ACM Journal of Experimental Algorithmics 15 (2010)

    Google Scholar 

  33. Walsh, T.: Sat v csp. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  34. Weaver, S.: Satisfiability Advancements Enabled by State Machines. Ph.D. thesis. University of Cincinnati (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Biere, A., Le Berre, D., Lonca, E., Manthey, N. (2014). Detecting Cardinality Constraints in CNF. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics