
Detecting Cardinality Constraints in CNF

Armin Biere1, Daniel Le Berre2, Emmanuel Lonca2, and Norbert Manthey3

1 Johannes Kepler University
2 CNRS Université d’Artois

3 Technische Universität Dresden

Abstract. We present novel approaches to detect cardinality constraints
expressed in CNF. The first approach is based on a syntactic analysis
of specific data structures used in SAT solvers to represent binary and
ternary clauses, whereas the second approach is based on a semantic
analysis by unit propagation. The syntactic approach computes an ap-
proximation of the cardinality constraints AtMost-1 and AtMost-2 con-
straints very fast, whereas the semantic approach has the property to be
generic, i.e. it can detect cardinality constraints AtMost-k for any k, at
a higher computation cost. Our experimental results suggest that both
approaches are efficient at recovering AtMost-1 and AtMost-2 cardinality
constraints.

1 Introduction

Current benchmarks in CNF contain various Boolean functions encoded with
clauses [30,15]. Among them, cardinality constraints

∑n
i=1 li⊗k with ⊗ ∈ {<,≤

,=,≥, >} are Boolean functions whose satisfiability is determined by counting
the satisfied literals on the left hand side and compare them to the right hand
side (the threshold). For instance, x1+x2+¬x3+¬x4 ≤ 2 is satisfied iff at most
2 of its literals are satisfied. A wide use case of those constraints is to encode that
a domain variable v takes one value of the discrete set {o1, o2, . . . , on}, which
is represented by the n Boolean variables voi and the cardinality constraint∑

voi = 1.
Since cardinality constraints are Boolean functions, they can be expressed by

an equivalent CNF. The “theoretical” approach, i.e. the one found in [12] for
instance, translates a cardinality constraint

∑n
i=1 li ≤ k using

(
n

k+1

)
negative

clauses of size k+ 1. Such encoding is called binomial because of the number of
generated clauses. In practice, introducing new variables to reduce the number
of clauses in the CNF usually results in a better performance. Various encodings
have been proposed in the last decade (see for instance [14] for a survey). We
discuss commonly used encodings in next section.

Pseudo-Boolean solvers use a proof system like generalized resolution [21],
which is a specific form of the cutting planes proof system [12] that p-simulates
resolution. This way, these solvers are able to solve instances of the Pigeon Hole
Principle [19] when they are given cardinality constraints but not when they are
given the same problem expressed with clauses. The reason of that behavior is

C. Sinz and U. Egly (Eds.): SAT 2014, LNCS 8561, pp. 285–301, 2014.
c© Springer International Publishing Switzerland 2014



286 A. Biere et al.

that applying generalized resolution on clauses is equivalent to resolution [21],
while on cardinality constraints generalized resolution is a specific form of cutting
planes [12]. Retrieving cardinality constraints from clauses in the cutting planes
proof system requires a very specific procedure. Take for instance the cardinality
constraint

x1 + x2 + x3 + x4 ≤ 1

which is equivalent to
x1 + x2 + x3 + x4 ≥ 3

This cardinality constraint is represented in CNF using the following clauses:

¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x1 ∨ ¬x4, ¬x2 ∨ ¬x3, ¬x2 ∨ ¬x4, ¬x3 ∨ ¬x4

These clauses can be represented as binary cardinality constraints:

x1+x2 ≤ 1, x1+x3 ≤ 1, x1+x4 ≤ 1, x2+x3 ≤ 1, x2+x4 ≤ 1, x3+x4 ≤ 1

Retrieving the original cardinality from the clauses represented by cardinalities
≤ 1 requires to derive intermediate constraints as shown below (from [12]):

x1 + x2 ≤ 1 x1 + x2 ≤ 1 x1 + x3 ≤ 1 x2 + x3 ≤ 1
x1 + x3 ≤ 1 x1 + x4 ≤ 1 x1 + x4 ≤ 1 x2 + x4 ≤ 1
x2 + x3 ≤ 1 x2 + x4 ≤ 1 x3 + x4 ≤ 1 x3 + x4 ≤ 1

x1 + x2 + x3 ≤ 1 x1 + x2 + x4 ≤ 1 x1 + x3 + x4 ≤ 1 x2 + x3 + x4 ≤ 1

For the first column, summing the three cardinality constraints leads to 2x1 +
2x2+2x3 ≤ 3, which can be reduced to x1+x2+x3 ≤ 1 by dividing the inequality
by 2 and rounding down the threshold. The same process can be applied to
derive the other cardinality constraints in the last line. Finally, summing up
these four cardinality constraints of 3 literals results in a cardinality constraint
of 4 literals: 3x1 + 3x2 + 3x3 + 3x4 ≤ 4. The expected cardinality constraint
x1 + x2 + x3 + x4 ≤ � 4

3� is obtained after division by 3 and rounding.
The described process is tedious and not easy to integrate in a solver. Thus,

the idea is to find a way to detect those cardinality constraints in a preprocessing
step, independent from the original proof system of the solver.

The motivation for this work is to allow solvers to take advantage of those
cardinality constraints, at least for space efficiency (support of native cardinality
constraints) or because of a better proof system (e.g. Generalized Resolution [21]
or Cutting Planes [12]). Detecting cardinality constraints is also an interesting
idea for pure SAT solvers, namely for constraints reencoding, e.g. to encode car-
dinality constraints back to CNF with an alternative and hopefully more efficient
encoding [27,26]. This is especially useful in practice to replace the commonly
used pairwise encoding of ≤ 1 constraints with a more efficient encoding.

2 Short Review of Known Encodings

Before we discuss how to find encoded cardinality constraints, a few common en-
codings for widely used constraints are introduced. For the AtMost-1 constraint


