Abstract
Human trajectory prediction is typically posed as a zero-shot generalization problem: a predictor is learnt on a dataset of human motion in training scenes, and then deployed on unseen test scenes. While this paradigm has yielded tremendous progress, it fundamentally assumes that trends in human behavior within the deployment scene are constant over time. As such, current prediction models are unable to adapt to transient human behaviors, such as crowds temporarily gathering to see buskers, pedestrians hurrying through the rain and avoiding puddles, or a protest breaking out. We formalize the problem of context-specific adaptive trajectory prediction and propose a new adaptation approach inspired by prompt tuning called latent corridors. By augmenting the input of a pre-trained human trajectory predictor with learnable image prompts, the predictor improves in the deployment scene by inferring trends from extremely small amounts of new data (e.g., 2 humans observed for 30 s). With less than \(0.1\%\) additional model parameters, we see up to \(23.9\%\) ADE improvement in MOTSynth simulated data and \(16.4\%\) ADE in MOT and Wildtrack real pedestrian data. Qualitatively, we observe that latent corridors imbue predictors with an awareness of scene geometry and context-specific human behaviors that non-adaptive predictors struggle to capture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abuduweili, A., Li, S., Liu, C.: Adaptable human intention and trajectory prediction for human-robot collaboration. arXiv preprint arXiv:1909.05089 (2019)
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)
Bahng, H., Jahanian, A., Sankaranarayanan, S., Isola, P.: Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274 (2022)
Bar, A., Gandelsman, Y., Darrell, T., Globerson, A., Efros, A.A.: Visual prompting via image inpainting. arXiv preprint arXiv:2209.00647 (2022)
Best, R., Norton, J.: A new model and efficient tracker for a target with curvilinear motion. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1030–1037 (1997). https://doi.org/10.1109/7.599328
Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23
Chavdarova, T., et al.: WILDTRACK: a multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039 (2018)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation (2022)
Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation (2021)
Cheng, Y., Zhao, W., Liu, C., Tomizuka, M.: Human motion prediction using semi-adaptable neural networks. In: 2019 American Control Conference (ACC), pp. 4884–4890. IEEE (2019)
Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)
Fabbri, M., et al.: MOTSynth: how can synthetic data help pedestrian detection and tracking? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10849–10859 (2021)
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)
Ivanovic, B., Harrison, J., Pavone, M.: Expanding the deployment envelope of behavior prediction via adaptive meta-learning. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7786–7793. IEEE (2023)
Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2375–2384 (2019)
Ivanovic, B., Schmerling, E., Leung, K., Pavone, M.: Generative modeling of multimodal multi-human behavior. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3088–3095. IEEE (2018)
Jia, M., et al.: Visual Prompt Tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022, LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41
Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015: towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942 (2015)
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)
Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)
Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)
Li, Y., et al.: Pre-training on synthetic driving data for trajectory prediction. arXiv preprint arXiv:2309.10121 (2023)
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)
Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15233–15242 (2021)
Mangalam, K., et al.: It is not the journey but the destination: endpoint conditioned trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 759–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_45
Manh, H., Alaghband, G.: Scene-LSTM: a model for human trajectory prediction. arXiv preprint arXiv:1808.04018 (2018)
Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: Mantra: memory augmented networks for multiple trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7143–7152 (2020)
Meng, M., et al.: Forecasting human trajectory from scene history. Adv. Neural. Inf. Process. Syst. 35, 24920–24933 (2022)
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)
Ngiam, J., et al.: Scene transformer: a unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417 (2021)
Nie, X., et al.: Pro-tuning: unified prompt tuning for vision tasks. In: IEEE Transactions on Circuits and Systems for Video Technology (2023)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)
Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020)
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)
Salzmann, T., Chiang, L., Ryll, M., Sadigh, D., Parada, C., Bewley, A.: Robots that can see: leveraging human pose for trajectory prediction. IEEE Robot. Autom. Lett. 8(11), 7090–7097 (2023). https://doi.org/10.1109/LRA.2023.3312035
Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40
Sandler, M., Zhmoginov, A., Vladymyrov, M., Jackson, A.: Fine-tuning image transformers using learnable memory. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12155–12164 (2022)
Sun, J., Li, Y., Fang, H.S., Lu, C.: Three steps to multimodal trajectory prediction: Modality clustering, classification and synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13250–13259 (2021)
Tay, M.K.C., Laugier, C.: Modelling smooth paths using gaussian processes. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 42, pp 381–390. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-75404-6_36
Varshneya, D., Srinivasaraghavan, G.: Human trajectory prediction using spatially aware deep attention models. arXiv preprint arXiv:1705.09436 (2017)
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4601–4607. IEEE (2018)
Wang, J., et al.: Review of large vision models and visual prompt engineering. arXiv preprint arXiv:2307.00855 (2023)
Wang, L., Hu, Y., Sun, L., Zhan, W., Tomizuka, M., Liu, C.: Transferable and adaptable driving behavior prediction. arXiv preprint arXiv:2202.05140 (2022)
Wang, Z., et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149 (2022)
Whyte, W.H.: The Social Life of Small Urban Spaces. Conservation Foundation, Washington, D.C (1980)
Xu, C., Mao, W., Zhang, W., Chen, S.: Remember intentions: retrospective-memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6488–6497 (2022)
Xu, Y., Wang, L., Wang, Y., Fu, Y.: Adaptive trajectory prediction via transferable GNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6520–6531 (2022)
Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194 (2018). https://doi.org/10.1109/WACV.2018.00135
Yang, B., Fan, F., Ni, R., Li, J., Kiong, L., Liu, X.: Continual learning-based trajectory prediction with memory augmented networks. Knowl.-Based Syst. 258, 110022 (2022)
Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box (2022)
Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12126–12134 (2019)
Acknowledgements
We thank Anastasios Angelopoulos, Antonio Loquercio, and Jathushan Rajasegaran for useful discussions and feedback. This work was supported by ONR MURI N00014-21-1-2801 and a NSF Graduate Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Thakkar, N., Mangalam, K., Bajcsy, A., Malik, J. (2025). Adaptive Human Trajectory Prediction via Latent Corridors. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-72920-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72919-5
Online ISBN: 978-3-031-72920-1
eBook Packages: Computer ScienceComputer Science (R0)