Skip to main content

Adaptive Human Trajectory Prediction via Latent Corridors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15096))

Included in the following conference series:

  • 55 Accesses

Abstract

Human trajectory prediction is typically posed as a zero-shot generalization problem: a predictor is learnt on a dataset of human motion in training scenes, and then deployed on unseen test scenes. While this paradigm has yielded tremendous progress, it fundamentally assumes that trends in human behavior within the deployment scene are constant over time. As such, current prediction models are unable to adapt to transient human behaviors, such as crowds temporarily gathering to see buskers, pedestrians hurrying through the rain and avoiding puddles, or a protest breaking out. We formalize the problem of context-specific adaptive trajectory prediction and propose a new adaptation approach inspired by prompt tuning called latent corridors. By augmenting the input of a pre-trained human trajectory predictor with learnable image prompts, the predictor improves in the deployment scene by inferring trends from extremely small amounts of new data (e.g., 2 humans observed for 30 s). With less than \(0.1\%\) additional model parameters, we see up to \(23.9\%\) ADE improvement in MOTSynth simulated data and \(16.4\%\) ADE in MOT and Wildtrack real pedestrian data. Qualitatively, we observe that latent corridors imbue predictors with an awareness of scene geometry and context-specific human behaviors that non-adaptive predictors struggle to capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abuduweili, A., Li, S., Liu, C.: Adaptable human intention and trajectory prediction for human-robot collaboration. arXiv preprint arXiv:1909.05089 (2019)

  2. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  3. Bahng, H., Jahanian, A., Sankaranarayanan, S., Isola, P.: Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274 (2022)

  4. Bar, A., Gandelsman, Y., Darrell, T., Globerson, A., Efros, A.A.: Visual prompting via image inpainting. arXiv preprint arXiv:2209.00647 (2022)

  5. Best, R., Norton, J.: A new model and efficient tracker for a target with curvilinear motion. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1030–1037 (1997). https://doi.org/10.1109/7.599328

    Article  Google Scholar 

  6. Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23

    Chapter  Google Scholar 

  7. Chavdarova, T., et al.: WILDTRACK: a multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039 (2018)

    Google Scholar 

  8. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation (2022)

    Google Scholar 

  9. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation (2021)

    Google Scholar 

  10. Cheng, Y., Zhao, W., Liu, C., Tomizuka, M.: Human motion prediction using semi-adaptable neural networks. In: 2019 American Control Conference (ACC), pp. 4884–4890. IEEE (2019)

    Google Scholar 

  11. Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)

  12. Fabbri, M., et al.: MOTSynth: how can synthetic data help pedestrian detection and tracking? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10849–10859 (2021)

    Google Scholar 

  13. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  15. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  16. Ivanovic, B., Harrison, J., Pavone, M.: Expanding the deployment envelope of behavior prediction via adaptive meta-learning. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7786–7793. IEEE (2023)

    Google Scholar 

  17. Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2375–2384 (2019)

    Google Scholar 

  18. Ivanovic, B., Schmerling, E., Leung, K., Pavone, M.: Generative modeling of multimodal multi-human behavior. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3088–3095. IEEE (2018)

    Google Scholar 

  19. Jia, M., et al.: Visual Prompt Tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022, LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41

  20. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  21. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015: towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942 (2015)

  22. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)

    Google Scholar 

  23. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)

  24. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)

  25. Li, Y., et al.: Pre-training on synthetic driving data for trajectory prediction. arXiv preprint arXiv:2309.10121 (2023)

  26. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  27. Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15233–15242 (2021)

    Google Scholar 

  28. Mangalam, K., et al.: It is not the journey but the destination: endpoint conditioned trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 759–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_45

    Chapter  Google Scholar 

  29. Manh, H., Alaghband, G.: Scene-LSTM: a model for human trajectory prediction. arXiv preprint arXiv:1808.04018 (2018)

  30. Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: Mantra: memory augmented networks for multiple trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7143–7152 (2020)

    Google Scholar 

  31. Meng, M., et al.: Forecasting human trajectory from scene history. Adv. Neural. Inf. Process. Syst. 35, 24920–24933 (2022)

    Google Scholar 

  32. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  33. Ngiam, J., et al.: Scene transformer: a unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417 (2021)

  34. Nie, X., et al.: Pro-tuning: unified prompt tuning for vision tasks. In: IEEE Transactions on Circuits and Systems for Video Technology (2023)

    Google Scholar 

  35. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)

    Google Scholar 

  36. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020)

    Article  Google Scholar 

  37. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  38. Salzmann, T., Chiang, L., Ryll, M., Sadigh, D., Parada, C., Bewley, A.: Robots that can see: leveraging human pose for trajectory prediction. IEEE Robot. Autom. Lett. 8(11), 7090–7097 (2023). https://doi.org/10.1109/LRA.2023.3312035

    Article  Google Scholar 

  39. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40

    Chapter  Google Scholar 

  40. Sandler, M., Zhmoginov, A., Vladymyrov, M., Jackson, A.: Fine-tuning image transformers using learnable memory. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12155–12164 (2022)

    Google Scholar 

  41. Sun, J., Li, Y., Fang, H.S., Lu, C.: Three steps to multimodal trajectory prediction: Modality clustering, classification and synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13250–13259 (2021)

    Google Scholar 

  42. Tay, M.K.C., Laugier, C.: Modelling smooth paths using gaussian processes. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 42, pp 381–390. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-75404-6_36

  43. Varshneya, D., Srinivasaraghavan, G.: Human trajectory prediction using spatially aware deep attention models. arXiv preprint arXiv:1705.09436 (2017)

  44. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4601–4607. IEEE (2018)

    Google Scholar 

  45. Wang, J., et al.: Review of large vision models and visual prompt engineering. arXiv preprint arXiv:2307.00855 (2023)

  46. Wang, L., Hu, Y., Sun, L., Zhan, W., Tomizuka, M., Liu, C.: Transferable and adaptable driving behavior prediction. arXiv preprint arXiv:2202.05140 (2022)

  47. Wang, Z., et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149 (2022)

    Google Scholar 

  48. Whyte, W.H.: The Social Life of Small Urban Spaces. Conservation Foundation, Washington, D.C (1980)

    Google Scholar 

  49. Xu, C., Mao, W., Zhang, W., Chen, S.: Remember intentions: retrospective-memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6488–6497 (2022)

    Google Scholar 

  50. Xu, Y., Wang, L., Wang, Y., Fu, Y.: Adaptive trajectory prediction via transferable GNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6520–6531 (2022)

    Google Scholar 

  51. Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194 (2018). https://doi.org/10.1109/WACV.2018.00135

  52. Yang, B., Fan, F., Ni, R., Li, J., Kiong, L., Liu, X.: Continual learning-based trajectory prediction with memory augmented networks. Knowl.-Based Syst. 258, 110022 (2022)

    Article  Google Scholar 

  53. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box (2022)

    Google Scholar 

  54. Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12126–12134 (2019)

    Google Scholar 

Download references

Acknowledgements

We thank Anastasios Angelopoulos, Antonio Loquercio, and Jathushan Rajasegaran for useful discussions and feedback. This work was supported by ONR MURI N00014-21-1-2801 and a NSF Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Thakkar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5186 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thakkar, N., Mangalam, K., Bajcsy, A., Malik, J. (2025). Adaptive Human Trajectory Prediction via Latent Corridors. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72920-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72919-5

  • Online ISBN: 978-3-031-72920-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics