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In the supplementary material, we provide an ablation on the implementation
of our prompting method and a visual overview of our ATP problem formulation.
We also show additional qualitative results on MOTSynth and more detailed
quantitative results on EarthCam data, quantitative results on ETH/UCY, and
compare our implementation of the scene-aware baseline to the original YNet
paper [1]. Video results can be seen at this webpage.

1 Details on Latent Corridors for Adaptive Trajectory
Prediction

1.1 Adaptive Trajectory Prediction Visualization

We provide an illustrative overview of adaptive trajectory prediction problem,
formulated in main text Sec. 3, in Fig. 1.

1.2 ATP via Latent Corridors on Architectures Beyond YNet

ATP is an architecture-agnostic paradigm, and latent corridors are also not spe-
cific to Y-Net but rather can also work on different architectures. To demonstrate
this, we experimented with the Learned Trajectory (PECNet-Ours) architecture
on the 473 MOTSynth scenes. Taking the pretrained PECNet-Ours model, we
summed a per-scene 16 parameter latent directly to the input, eight xy coordi-
nates. Training the 16D latent along with finetuning the last layer of PECNet-
Ours, we see an improvement of 10.2% on ADE and 10.4% on FDE.

1.3 Ablation on Prompt Location/Size

We ablated the prompt location and method of combining with the input. For
the input location, we experimented with combining the prompt with several
parts of the input to P, [Mτ−H:τ , S]: all of the input heatmaps Mτ−H:τ , just
the first input heatmap M0, just the segmentation map S, and all of the inputs.
For method of combination, we experimented with element-wise summing and
element-wise multiplication. We ran this ablation on the latent corridors-only
approach to training on MOTSynth. Results can be seen in Table 2. While
summing seems to lead to better performance than multiplying, and summing
to the heatmaps seems to be more helpful than summing to the segmentation,

https://neerja.me/atp_latent_corridors/
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Fig. 1: Adaptive trajectory prediction. ATP, formulated in Sec. 3, allows a pre-
trained predictor P to adapt to a new deployment scene by learning over time on the
deployment scene. Once adaptation has occurred, the adapted predictor A[P] should
perform better on the deployment scene.

Method ADE FDE
Learned Trajectory (PECNet-Ours) 51.2 100.0
ATP (LC + Joint Finetune) 46.0 89.6

Table 1: Results of applying ATP via latent corridors to PECNet. ATP using 16D
latent corridors with joint finetuning improves the performance of PECNet.

generally, the prompts are effective at improving performance on a variety of
input locations. This shows promise for training latent corridors to adapt a
variety of architectures.

1.4 Segmentation Classes

We condense Mask2Former’s 132 classes into 12 classes that are meaningful for
outdoor pedestrians: person, bicycle, car, motorcycle, large vehicle, traffic light,
stop sign, bench, stairs, road/ground, building/wall, other.

2 Additional Experimental Results

2.1 Results on MOTSynth, WildTrack, MOT, and EarthCam

In Fig. 2, we see the FDE results for MOTSynth, WildTrack and MOT over time.
Similar to results with the ADE metric, we see that on real data (Fig. 2a), the
adaptive finetuning baseline is slightly better than just latent corridors, but ATP
via both latent corridor prompting and per-scene finetuning largely outperforms
both of those, and all adaptive methods outperform the non-adaptive baselines.
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Prompt Method ADE FDE

Sum to all heatmaps Mτ−H:τ 44.6 90.2
Sum to M0 45.1 92.1
Sum to S 46.4 97.3
Sum to Mτ−H:τ and S 46.4 96.5
Multiply to all heatmaps Mτ−H:τ 46.5 96.1
Multiply to S 45.8 93.6
Multiply to M0 47.6 101.6
Multiply to Mτ−H:τ and S 46.5 96.1

Table 2: Ablation on 437 MOTSynth scenes in the ATP latent corridor adaptation
configuration. We experiment with different locations and methods of combining the
prompt with the input, and find that summing the prompt to all input heatmaps yields
the best result, but most combinations result in an improvement on the scene-aware
baseline (see main text Table 1).

On the MOTSynth data, as with ADE, the ATP via just per-scene finetuning
or just latent corridors are comparable (Fig. 2b). With FDE, while some scenes
have minimal gains, we see even more significant error reduction for some scenes
than with ADE, of up to 91.4%, and an average FDE improvement of 33.9%
from ATP via latent corridors and per-scene finetuning on 25 MOTSynth scenes
(Fig. 2c).

We showcase additional qualitative results on MOTSynth data in Fig. 3.
We see that our approach is able to learn that in a nighttime scene with a
large staircase, pedestrians mostly move towards the staircase, regardless of the
direction of their observed history (top left and middle). We also see that our
approach learns that pedestrians tend to stay on a walkway (top right). Finally,
we see several examples of our approach having awareness of the 3D ground plane
and predicting future trajectories that lie within the ground plane (bottom two
rows).

Quantitative results for each of the EarthCam scenes can be seen in Table 3.
We see that across the four EarthCam scenes, ATP via per-scene finetuning alone
works better than using latent corridor adaptation alone (by a narrow margin on
both NoLA scenes, and by a significant amount on the Rick’s Cafe scene), but
a combination of the two is significantly better than any other adaptive or non-
adaptive approach. Interestingly, for the Rick’s Cafe and Times Square scenes,
a constant velocity baseline is better than our non-adaptive learned baselines,
but our ATP approach outperforms all baselines.

2.2 Results on ETH/UCY

The main text focused on challenging datasets with non-top-down camera view-
points, as compared to birds-eye-view datasets popular in earlier works such as
SDD and ETH/UCY. Here, we run our approach in this setting by evaluating
on ETH/UCY. For each scene in ETH/UCY (ETH, HOTEL, UNIV, ZARA1,
ZARA2), we construct an 80/20 train-test split and evaluate as described in main
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Fig. 2: Adaptation over time FDE. As in main text Fig. 5, the x-axis represents
normalized adaptation time in human-seconds. The y-axis represents the FDE (lower
is better). Results are normalized per-scene and averaged over models trained on 25
MOTSynth scenes (a) and 7 from MOT and WildTrack (b), with shaded area σ/10. For
the FDE metric, our methods improve on the baselines increasingly with adaptation
time. Latent corridors + per-scene finetuning has the best performance, as with FDE,
and ATP via just finetuning or just latent corridor learning is still comparable. c)
Comparison to baseline over many MOTSynth scenes for models trained with 8%
(point) and 80% (arrowhead) human-second datasets for FDE. For many deployment
scenes, FDE improves significantly more with our method than ADE improved, but
still, the per-scene improvements are varied.

text section 6.2. Results in Table 4 are in pixels and we compute ADE/FDE on
a single predicted future. We see a 4.6% improvement in ADE and 2.4% in FDE
using LC over per-scene finetuning.

3 Choice of Baselines

Our key scene-aware baseline is YNet, which outperforms or is comparable to
other methods that utilize scene priors and trajectory histories such as [2–4,
6]. Since we used a simplified version of the YNet architecture for our scene-
aware baseline, we have further benchmarked against the original YNet using
the codebase training configuration using MOTSynth and the Stanford Drone
Dataset [5]. We see in Table 5 that the YNet-Ours outperforms the original YNet
in the unimodal setting.
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Scene-AwareObserved past Ground-truth ATP (LC + Per-Scene Finetune)

Fig. 3: Additional MOTSynth qualitative results. (top left and middle) From
several examples of pedestrians in motion, our approach (orange) is able to learn that
in this scene, most pedestrians will turn to go down the stairs, while the scene-aware
baseline (purple) struggles to understand this scene-specific feature, and instead as-
sumes that the pedestrian will continue walking in the direction of the observed his-
tory. Our model is also able to gain understanding that most pedestrians will stay on
a walkway, even if they move in a direction orthogonal to it (top right). We also see
many more examples of our approach having better awareness of the 3D nature of the
ground plane projected into the 2D image (bottom two rows), even when the ground
plane is tilted (middle middle).
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Method Rick’s Cafe Times Square NoLA (Day) NoLA (Night)
ADE FDE ADE FDE ADE FDE ADE FDE

Constant velocity 9.6 16.3 15.1 26.9 36.0 70.7 48.4 94.8
Learned Traj (PECNet-Ours) 20.6 29.6 42.7 60.5 35.1 64.1 38.8 67.8
Scene-aware (YNet-Ours) 10.4 16.8 17.3 30.5 30.7 59.2 37.3 71.0
ATP (Finetune) 7.4 10.6 14.7 25.1 30.4 57.1 34.9 62.0
ATP (LC) 10.2 16.5 16.7 29.0 30.3 58.0 36.5 67.8
ATP (LC + Per-Scene FT) 6.2 8.8 11.7 19.5 22.6 43.0 29.5 51.9
Table 3: Results on four EarthCam scenes. Across all of these challenging in-the-wild
scenarios, our ATP method using latent corridors and per-scene finetuning outperforms
the baselines and other ATP methods.

Method ADE FDE
Scene Aware (YNet-Ours) 32.3 69.1
ATP (Per-Scene Finetune) 22.8 46.6
ATP (LC + Per-Scene Finetune) 21.8 45.5

Table 4: Results on ETH/UCY. ATP using latent corridors and per-scene finetuning
outperforms ATP using fine-tuning alone, and both approaches successfully adapt over
the scene-aware baseline.

SDD MOTSynth
Method ADE FDE ADE FDE
YNet [1] 24.9 49.9 54.4 112.3
YNet-Ours 17.3 33.6 47.3 96.5

Table 5: The original YNet model compared to our unimodal-only implementation
(YNet-Ours). We see that on both SDD and MOTSynth, YNet-Ours outperforms YNet,
and is therefore a stronger baseline.
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