Abstract
In this paper, we consider the online semi-matching problem with two heterogeneous sensors \(s_1\) and \(s_2\) in a metric space (X, d), where \(d(\cdot , \cdot )\) is a distance function. If a request r is assigned to sensor \(s_1\), then the matching cost is \(d(r,s_1)\); otherwise, the matching cost is \(\frac{d(r,s_2)}{w}\), where \(w\ge 1\) is the weight of sensor \(s_2\). The goal is to minimize the total cost of matching all requests. We design an optimal online algorithm with a competitive ratio of \(1+w+\frac{\sqrt{w}}{w}\) for \(1<w\le \alpha \), and an optimal online algorithm with a competitive ratio of w for \(w>\alpha \), where \(\alpha \approx 3.382\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anthony, B.M., Chung, C.: Online bottleneck matching. J. Combin. Optim. 27(1), 100–114 (2014). https://doi.org/10.1007/s10878-012-9581-9
Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A \(o(n)\)- competitive deterministic algorithm for online matching on a line. Algorithmica 81, 2917–2933 (2019)
Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: A randomized \(O(\log ^2k)\)-competitive algorithm for metric bipartite matching. Algorithmica 68, 390–403 (2014). https://doi.org/10.1007/s00453-012-9676-9
Fuchs, B., Hochstattler, W., Kern, W.: Online matching on a line. Theor. Comput. Sci. 332(1), 251–264 (2005)
Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) Automata, Languages, and Programming, ICALP 2012. LNCS, vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_36
Idury, R., Schaffer, A.A.: A better lower bound for on-line bottleneck matching (1992)
Itoh, T., Miyazaki, S., Satake, M.: Competitive analysis for two variants of online metric matching problem. Discret. Math. Algorithms Appl. 13, 2150156 (2021)
Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488 (1993). Preliminary version appeared in Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 234–240 (1991)
Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)
Li, W., Li, J., Guan, L., Shi, Y.: The prize-collecting call control problem on weighted lines and rings. RAIRO-Oper. Res. 50(1), 39–46 (2016)
Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for minimum metric bipartite matching. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm(SODA), pp 954–959 (2006)
Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric bipartite matching problem. In: Proceedings of IEEE 58th Annual Symposium on Foundations of Computer Science, pp. 505–515. (2017)
Peserico, E., Scquizzato, M.: Matching on the line admits no \(o(\sqrt{\log n})\)-competitive algorithm. In: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP), Article 103 (2021)
Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching. In: Proceedings of Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016), ID 18 (2016)
Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching problem on a line. In: Proceedings of 34th International Symposium on Computational Geometry, ID 67 (2017)
Xiao, M., Zhao, S., Li, W., Yang, J.: Online bottleneck semi-matching. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) Combinatorial Optimization and Applications, COCOA 2021. LNCS, vol. 13135, pp. 445–455. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92681-6_35
Acknowledgement
The work is supported in part by the National Natural Science Foundation of China [No. 12071417].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xiao, M., Li, W. (2022). Online Semi-matching Problem with Two Heterogeneous Sensors in a Metric Space. In: Zhang, Y., Miao, D., Möhring, R. (eds) Computing and Combinatorics. COCOON 2022. Lecture Notes in Computer Science, vol 13595. Springer, Cham. https://doi.org/10.1007/978-3-031-22105-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-22105-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22104-0
Online ISBN: 978-3-031-22105-7
eBook Packages: Computer ScienceComputer Science (R0)