Skip to main content

Online Bottleneck Semi-matching

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

Abstract

We introduce the online bottleneck semi-matching (OBSM) problem, which is to assign a sequence of requests to a given set of m servers, such that the maximum cost is minimized. We present a lower bound \(m+1\) and an online algorithm with competitive ratio \(2m-1\) for the OBSM problem on a line, where the distance between every pair of adjacent servers is the same. When \(m=2\), we present an optimal online algorithm with competitive ratio 3 for the OBSM problem. When \(m=3\), we present two optimal online algorithms with competitive ratio at most \(3+\sqrt{2}\) for the OBSM problem on a line, which matches the previous best lower bound proposed about thirty years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, A.R., Rahman, M.S., Kobourov, S.: Online facility assignment. Theoret. Comput. Sci. 806, 455–467 (2020)

    Article  MathSciNet  Google Scholar 

  2. Anthony, B.M., Chung, C.: Online bottleneck matching. J. Comb. Optim. 27(1), 100–114 (2012). https://doi.org/10.1007/s10878-012-9581-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Anthony, B.M., Chung, C.: Serve or skip: the power of rejection in online bottleneck matching. J. Comb. Optim. 32(4), 1232–1253 (2015). https://doi.org/10.1007/s10878-015-9948-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A \(o(n)\)- competitive deterministic algorithm for online matching on a line. Algorithmica 81, 2917–2933 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: A randomized \(O(\log ^2k)\)-competitive algorithm for metric bipartite matching. Algorithmica 68, 390–403 (2014)

    Article  MathSciNet  Google Scholar 

  6. Fuchs, B., Hochstattler, W., Kern, W.: Online matching on a line. Theoret. Comput. Sci. 332(1), 251–264 (2005)

    Article  MathSciNet  Google Scholar 

  7. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In: Proceedings of International Colloquium on Automata, Languages, and Programming (ICALP), pp. 424–435 (2012)

    Google Scholar 

  8. Idury, R., Schaffer, A.A.: A better lower bound for on-line bottleneck matching, manuscript (1992)

    Google Scholar 

  9. Itoh, T., Miyazaki, S., Satake, M.: Competitive analysis for two variants of online metric matching problem, Discrete Mathematics, Algorithms and Applications, ID 2150156 (2021)

    Google Scholar 

  10. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488 (1993) Preliminary version appeared in Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 234–240 (1991)

    Google Scholar 

  11. Kalyanasundaram, B., Pruhs, K.: On-line network optimization problems. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 268–280. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029573

    Chapter  Google Scholar 

  12. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J. Discret. Math. 13(3), 370–383 (2000)

    Article  MathSciNet  Google Scholar 

  13. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric bipartite matching problem. In: Proceedings of IEEE 58th Annual Symposium on Foundations of Computer Science, pp. 505–515 (2017)

    Google Scholar 

  14. Peserico, E., Scquizzato, M.: Matching on the line admits no \(o(\sqrt{\log n})\)-competitive algorithm. In: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP), Article No. 103 (2021)

    Google Scholar 

  15. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching. In: Proceedings of Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016), ID 18 (2016)

    Google Scholar 

  16. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching problem on a line. In: Proceedings of 34th International Symposium on Computational Geometry, ID 67 (2017)

    Google Scholar 

Download references

Acknowledgement

The work is supported in part by the National Natural Science Foundation of China [No. 12071417], Program for Excellent Young Talents of Yunnan University, Training Program of National Science Fund for Distinguished Young Scholars, and IRTSTYN.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, M., Zhao, S., Li, W., Yang, J. (2021). Online Bottleneck Semi-matching. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics