Skip to main content

Computing the Fréchet Distance Between Uncertain Curves in One Dimension

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2021)

Abstract

We consider the problem of computing the Fréchet distance between two curves for which the exact locations of the vertices are unknown. Each vertex may be placed in a given uncertainty region for that vertex, and the objective is to place vertices so as to minimise the Fréchet distance. This problem was recently shown to be NP-hard in 2D, and it is unclear how to compute an optimal vertex placement at all.

We give a polynomial-time algorithm for 1D curves with intervals as uncertainty regions. In contrast, we show that the problem is NP-hard in 1D in the case that vertices are placed to maximise the Fréchet distance.

We also study the weak Fréchet distance between uncertain curves. While finding the optimal placement of vertices seems more difficult than for the regular Fréchet distance—and indeed we can easily prove that the problem is NP-hard in 2D—the optimal placement of vertices in 1D can be computed in polynomial time. Finally, we investigate the discrete weak Fréchet distance, for which, somewhat surprisingly, the problem is NP-hard already in 1D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abellanas, M., et al.: Smallest color-spanning objects. In: auf der Heide, F.M. (ed.) Algorithms – ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44676-1_23

    Chapter  Google Scholar 

  2. Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014). https://doi.org/10.1137/130920526

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmed, M., Wenk, C.: Constructing street networks from GPS trajectories. In: Epstein, L., Ferragina, P. (eds.) Algorithms – ESA 2012. LNCS, vol. 7501, pp. 60–71. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33090-2_7

    Chapter  Google Scholar 

  4. Ahn, H.K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the discrete Fréchet distance with imprecise input. Int. J. Comput. Geom. Appl. 22(1), 27–44 (2012). https://doi.org/10.1142/S0218195912600023

    Article  MATH  Google Scholar 

  5. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5(1), 75–91 (1995). https://doi.org/10.1142/S0218195995000064

    Article  MATH  Google Scholar 

  6. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 853–864. ACM, New York (2005). https://doi.org/10.5555/1083592.1083691

  7. Bringmann, K.: Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), pp. 661–670. IEEE, Piscataway, NJ, USA (2014). https://doi.org/10.1109/FOCS.2014.76

  8. Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet distance. J. Comput. Geom. 7(2), 46–76 (2016). https://doi.org/10.20382/jocg.v7i2a4

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchin, K., et al.: Clustering trajectories for map construction. In: Proceedings of the 25th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’17), pp. 14:1–14:10. ACM, New York (2017). https://doi.org/10.1145/3139958.3139964

  10. Buchin, K., Buchin, M., Knauer, C., Rote, G., Wenk, C.: How difficult is it to walk the dog? (2007). https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf, presented at EuroCG 2007, Graz, Austria

  11. Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four Soviets walk the dog: improved bounds for computing the Fréchet distance. Discret. Comput. Geom. 58(1), 180–216 (2017). https://doi.org/10.1007/s00454-017-9878-7

    Article  MATH  Google Scholar 

  12. Buchin, K., Driemel, A., van de L’Isle, N., Nusser, A.: Klcluster: center-based clustering of trajectories. In: Proceedings of the 27th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19), pp. 496–499. ACM, New York (2019). https://doi.org/10.1145/3347146.3359111

  13. Buchin, K., Fan, C., Löffler, M., Popov, A., Raichel, B., Roeloffzen, M.: Fréchet distance for uncertain curves. In: 47th International Colloquium on Automata, Languages, and Programming. LIPIcs, vol. 168, pp. 20:1–20:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.20

  14. Buchin, K., Löffler, M., Morin, P., Mulzer, W.: Preprocessing imprecise points for Delaunay triangulation: simplified and extended. Algorithmica 61(3), 674–693 (2011). https://doi.org/10.1007/s00453-010-9430-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Buchin, K., Löffler, M., Ophelders, T., Popov, A., Urhausen, J., Verbeek, K.: Computing the Fréchet distance between uncertain curves in one dimension. arXiv preprint (2021). https://arxiv.org/abs/2105.09922

  16. Buchin, K., Ophelders, T., Speckmann, B.: SETH says: weak Fréchet distance is faster, but only if it is continuous and in one dimension. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 2887–2901. SIAM, Philadelphia, PA, USA (2019). https://doi.org/10.5555/3310435.3310614

  17. Buchin, M., Sijben, S.: Discrete Fréchet distance for uncertain points (2016). http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf, presented at EuroCG 2016, Lugano, Switzerland

  18. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. Discret. Comput. Geom. 48(1), 94–127 (2012). https://doi.org/10.1007/s00454-012-9402-z

    Article  MATH  Google Scholar 

  19. Fan, C., Luo, J., Zhu, B.: Tight approximation bounds for connectivity with a color-spanning set. In: Cai, L., Cheng, S.W., Lam, T.W. (eds.) Algorithms and Computation (ISAAC 2013). LNCS, vol. 8283, pp. 590–600. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-45030-3_55

    Chapter  Google Scholar 

  20. Fan, C., Zhu, B.: Complexity and algorithms for the discrete Fréchet distance upper bound with imprecise input. arXiv preprint (2018). https://arxiv.org/abs/1509.02576v2

  21. Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47, 16–27 (2014). https://doi.org/10.1016/j.compenvurbsys.2013.09.004

    Article  Google Scholar 

  22. Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. ACM Trans. Algorithms 10(1), 3:1–3:22 (2014). https://doi.org/10.1145/2532646

    Article  MATH  Google Scholar 

  23. Jiang, M., Xu, Y., Zhu, B.: Protein structure: structure alignment with discrete Fréchet distance. J. Bioinform. Comput. Biol. 6(1), 51–64 (2008). https://doi.org/10.1142/s0219720008003278

    Article  Google Scholar 

  24. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. Theor. Comput. Sci. 412(32), 4173–4186 (2011). https://doi.org/10.1016/j.tcs.2011.01.039

    Article  MathSciNet  MATH  Google Scholar 

  25. van Kreveld, M., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. SIAM J. Comput. 39(7), 2990–3000 (2010). https://doi.org/10.1137/090753620

    Article  MathSciNet  MATH  Google Scholar 

  26. Löffler, M.: Data imprecision in computational geometry. Ph.D. thesis. Universiteit Utrecht (2009). https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf

  27. Löffler, M., van Kreveld, M.: Largest and smallest tours and convex hulls for imprecise points. In: Arge, L., Freivalds, R. (eds.) Algorithm Theory. LNCS, vol. 4059, pp. 375–387. Springer, Berlin (2006). https://doi.org/10.1007/11785293_35

    Chapter  Google Scholar 

  28. Löffler, M., Mulzer, W.: Unions of onions: preprocessing imprecise points for fast onion decomposition. J. Comput. Geom. 5(1), 1–13 (2014). https://doi.org/10.20382/jocg.v5i1a1

    Article  MathSciNet  MATH  Google Scholar 

  29. Löffler, M., Snoeyink, J.S.: Delaunay triangulations of imprecise points in linear time after preprocessing. Comput. Geom. Theory Appl. 43(3), 234–242 (2010). https://doi.org/10.1016/j.comgeo.2008.12.007

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, J., Gao, X., Zhan, E., Huang, Z.: Algorithm of on-line handwriting signature verification based on discrete Fréchet distance. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) International Symposium on Intelligence Computation and Applications. LNCS, vol. 5370, pp. 461–469. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-92137-0_5

    Chapter  Google Scholar 

Download references

Acknowledgements

Research on the topic of this paper was initiated at the 5th Workshop on Applied Geometric Algorithms (AGA 2020) in Langbroek, Netherlands. Maarten Löffler is partially supported by the Dutch Research Council (NWO) under project no. 614.001.504 and no. 628.011.005. Aleksandr Popov is supported by the Dutch Research Council (NWO) under project no. 612.001.801. Jérôme Urhausen is supported by the Dutch Research Council (NWO) under project no. 612.001.651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buchin, K., Löffler, M., Ophelders, T., Popov, A., Urhausen, J., Verbeek, K. (2021). Computing the Fréchet Distance Between Uncertain Curves in One Dimension. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics