Abstract
We consider the problem of computing the Fréchet distance between two curves for which the exact locations of the vertices are unknown. Each vertex may be placed in a given uncertainty region for that vertex, and the objective is to place vertices so as to minimise the Fréchet distance. This problem was recently shown to be NP-hard in 2D, and it is unclear how to compute an optimal vertex placement at all.
We give a polynomial-time algorithm for 1D curves with intervals as uncertainty regions. In contrast, we show that the problem is NP-hard in 1D in the case that vertices are placed to maximise the Fréchet distance.
We also study the weak Fréchet distance between uncertain curves. While finding the optimal placement of vertices seems more difficult than for the regular Fréchet distance—and indeed we can easily prove that the problem is NP-hard in 2D—the optimal placement of vertices in 1D can be computed in polynomial time. Finally, we investigate the discrete weak Fréchet distance, for which, somewhat surprisingly, the problem is NP-hard already in 1D.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abellanas, M., et al.: Smallest color-spanning objects. In: auf der Heide, F.M. (ed.) Algorithms – ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44676-1_23
Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014). https://doi.org/10.1137/130920526
Ahmed, M., Wenk, C.: Constructing street networks from GPS trajectories. In: Epstein, L., Ferragina, P. (eds.) Algorithms – ESA 2012. LNCS, vol. 7501, pp. 60–71. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33090-2_7
Ahn, H.K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the discrete Fréchet distance with imprecise input. Int. J. Comput. Geom. Appl. 22(1), 27–44 (2012). https://doi.org/10.1142/S0218195912600023
Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5(1), 75–91 (1995). https://doi.org/10.1142/S0218195995000064
Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 853–864. ACM, New York (2005). https://doi.org/10.5555/1083592.1083691
Bringmann, K.: Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), pp. 661–670. IEEE, Piscataway, NJ, USA (2014). https://doi.org/10.1109/FOCS.2014.76
Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet distance. J. Comput. Geom. 7(2), 46–76 (2016). https://doi.org/10.20382/jocg.v7i2a4
Buchin, K., et al.: Clustering trajectories for map construction. In: Proceedings of the 25th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’17), pp. 14:1–14:10. ACM, New York (2017). https://doi.org/10.1145/3139958.3139964
Buchin, K., Buchin, M., Knauer, C., Rote, G., Wenk, C.: How difficult is it to walk the dog? (2007). https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf, presented at EuroCG 2007, Graz, Austria
Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four Soviets walk the dog: improved bounds for computing the Fréchet distance. Discret. Comput. Geom. 58(1), 180–216 (2017). https://doi.org/10.1007/s00454-017-9878-7
Buchin, K., Driemel, A., van de L’Isle, N., Nusser, A.: Klcluster: center-based clustering of trajectories. In: Proceedings of the 27th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19), pp. 496–499. ACM, New York (2019). https://doi.org/10.1145/3347146.3359111
Buchin, K., Fan, C., Löffler, M., Popov, A., Raichel, B., Roeloffzen, M.: Fréchet distance for uncertain curves. In: 47th International Colloquium on Automata, Languages, and Programming. LIPIcs, vol. 168, pp. 20:1–20:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.20
Buchin, K., Löffler, M., Morin, P., Mulzer, W.: Preprocessing imprecise points for Delaunay triangulation: simplified and extended. Algorithmica 61(3), 674–693 (2011). https://doi.org/10.1007/s00453-010-9430-0
Buchin, K., Löffler, M., Ophelders, T., Popov, A., Urhausen, J., Verbeek, K.: Computing the Fréchet distance between uncertain curves in one dimension. arXiv preprint (2021). https://arxiv.org/abs/2105.09922
Buchin, K., Ophelders, T., Speckmann, B.: SETH says: weak Fréchet distance is faster, but only if it is continuous and in one dimension. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 2887–2901. SIAM, Philadelphia, PA, USA (2019). https://doi.org/10.5555/3310435.3310614
Buchin, M., Sijben, S.: Discrete Fréchet distance for uncertain points (2016). http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf, presented at EuroCG 2016, Lugano, Switzerland
Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. Discret. Comput. Geom. 48(1), 94–127 (2012). https://doi.org/10.1007/s00454-012-9402-z
Fan, C., Luo, J., Zhu, B.: Tight approximation bounds for connectivity with a color-spanning set. In: Cai, L., Cheng, S.W., Lam, T.W. (eds.) Algorithms and Computation (ISAAC 2013). LNCS, vol. 8283, pp. 590–600. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-45030-3_55
Fan, C., Zhu, B.: Complexity and algorithms for the discrete Fréchet distance upper bound with imprecise input. arXiv preprint (2018). https://arxiv.org/abs/1509.02576v2
Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47, 16–27 (2014). https://doi.org/10.1016/j.compenvurbsys.2013.09.004
Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. ACM Trans. Algorithms 10(1), 3:1–3:22 (2014). https://doi.org/10.1145/2532646
Jiang, M., Xu, Y., Zhu, B.: Protein structure: structure alignment with discrete Fréchet distance. J. Bioinform. Comput. Biol. 6(1), 51–64 (2008). https://doi.org/10.1142/s0219720008003278
Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. Theor. Comput. Sci. 412(32), 4173–4186 (2011). https://doi.org/10.1016/j.tcs.2011.01.039
van Kreveld, M., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. SIAM J. Comput. 39(7), 2990–3000 (2010). https://doi.org/10.1137/090753620
Löffler, M.: Data imprecision in computational geometry. Ph.D. thesis. Universiteit Utrecht (2009). https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
Löffler, M., van Kreveld, M.: Largest and smallest tours and convex hulls for imprecise points. In: Arge, L., Freivalds, R. (eds.) Algorithm Theory. LNCS, vol. 4059, pp. 375–387. Springer, Berlin (2006). https://doi.org/10.1007/11785293_35
Löffler, M., Mulzer, W.: Unions of onions: preprocessing imprecise points for fast onion decomposition. J. Comput. Geom. 5(1), 1–13 (2014). https://doi.org/10.20382/jocg.v5i1a1
Löffler, M., Snoeyink, J.S.: Delaunay triangulations of imprecise points in linear time after preprocessing. Comput. Geom. Theory Appl. 43(3), 234–242 (2010). https://doi.org/10.1016/j.comgeo.2008.12.007
Zheng, J., Gao, X., Zhan, E., Huang, Z.: Algorithm of on-line handwriting signature verification based on discrete Fréchet distance. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) International Symposium on Intelligence Computation and Applications. LNCS, vol. 5370, pp. 461–469. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-92137-0_5
Acknowledgements
Research on the topic of this paper was initiated at the 5th Workshop on Applied Geometric Algorithms (AGA 2020) in Langbroek, Netherlands. Maarten Löffler is partially supported by the Dutch Research Council (NWO) under project no. 614.001.504 and no. 628.011.005. Aleksandr Popov is supported by the Dutch Research Council (NWO) under project no. 612.001.801. Jérôme Urhausen is supported by the Dutch Research Council (NWO) under project no. 612.001.651.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Buchin, K., Löffler, M., Ophelders, T., Popov, A., Urhausen, J., Verbeek, K. (2021). Computing the Fréchet Distance Between Uncertain Curves in One Dimension. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-83508-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83507-1
Online ISBN: 978-3-030-83508-8
eBook Packages: Computer ScienceComputer Science (R0)